

Draft NIST Special Publication 800-190 1

 2

Application Container Security Guide 3

 4

 5

Murugiah Souppaya 6
John Morello 7

Karen Scarfone 8
 9

 10

 11

 12

 13

 14

C O M P U T E R S E C U R I T Y 15

 16

 17

Draft NIST Special Publication 800-190 18

Application Container Security Guide 19

 20
 21

Murugiah Souppaya 22
Computer Security Division 23

Information Technology Laboratory 24
 25

John Morello 26
Twistlock 27

Baton Rouge, Louisiana 28
 29

Karen Scarfone 30
Scarfone Cybersecurity 31

Clifton, Virginia 32
 33
 34
 35

April 2017 36
 37
 38

 39
 40
 41

U.S. Department of Commerce 42
Wilbur L. Ross, Jr., Secretary 43

 44
National Institute of Standards and Technology 45

Kent Rochford, Acting Under Secretary of Commerce for Standards and Technology and Acting Director 46

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

i

Authority 47

This publication has been developed by NIST in accordance with its statutory responsibilities under the 48
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 49
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, 50
including minimum requirements for federal information systems, but such standards and guidelines shall 51
not apply to national security systems without the express approval of appropriate federal officials 52
exercising policy authority over such systems. This guideline is consistent with the requirements of the 53
Office of Management and Budget (OMB) Circular A-130. 54

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory 55
and binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should 56
these guidelines be interpreted as altering or superseding the existing authorities of the Secretary of 57
Commerce, Director of the OMB, or any other federal official. This publication may be used by 58
nongovernmental organizations on a voluntary basis and is not subject to copyright in the United States. 59
Attribution would, however, be appreciated by NIST. 60

National Institute of Standards and Technology Special Publication 800-190 61
Natl. Inst. Stand. Technol. Spec. Publ. 800-190, 56 pages (April 2017) 62

CODEN: NSPUE2 63

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 64
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 65
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 66
available for the purpose. 67
There may be references in this publication to other publications currently under development by NIST in 68
accordance with its assigned statutory responsibilities. The information in this publication, including concepts and 69
methodologies, may be used by federal agencies even before the completion of such companion publications. Thus, 70
until each publication is completed, current requirements, guidelines, and procedures, where they exist, remain 71
operative. For planning and transition purposes, federal agencies may wish to closely follow the development of 72
these new publications by NIST. 73
Organizations are encouraged to review all draft publications during public comment periods and provide feedback 74
to NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 75
http://csrc.nist.gov/publications. 76

Public comment period: April 10, 2017 through May 18, 2017 77
National Institute of Standards and Technology 78

Attn: Computer Security Division, Information Technology Laboratory 79
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 80

Email: 800-190comments@nist.gov 81

 82

 All comments are subject to release under the Freedom of Information Act (FOIA). 83
 84

http://csrc.nist.gov/publications
mailto:800-190comments@nist.gov

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

ii

Reports on Computer Systems Technology 85

The Information Technology Laboratory (ITL) at the National Institute of Standards and 86
Technology (NIST) promotes the U.S. economy and public welfare by providing technical 87
leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 88
methods, reference data, proof of concept implementations, and technical analyses to advance 89
the development and productive use of information technology. ITL’s responsibilities include the 90
development of management, administrative, technical, and physical standards and guidelines for 91
the cost-effective security and privacy of other than national security-related information in 92
federal information systems. The Special Publication 800-series reports on ITL’s research, 93
guidelines, and outreach efforts in information system security, and its collaborative activities 94
with industry, government, and academic organizations. 95

 96

Abstract 97

Application container technologies, also known as containers, are a form of operating system 98
virtualization combined with application software packaging. Containers provide a portable, 99
reusable, and automatable way to package and run applications. This publication explains the 100
potential security concerns associated with the use of containers and provides recommendations 101
for addressing these concerns. 102

 103

Keywords 104

application; application container; application software packaging; container; container security; 105
isolation; operating system virtualization; virtualization 106

 107

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

iii

Acknowledgements 108

The authors wish to thank their colleagues, who have reviewed drafts of this document and 109
contributed to its technical content during its development, in particular Raghuram Yeluri from 110
Intel Corporation, Paul Cichonski from Cisco Systems, Inc., and Michael Bartock and Jeffrey 111
Cichonski from NIST. 112

 113

Audience 114

The intended audience for this document is system and security administrators, security program 115
managers, information system security officers, and others who have responsibilities for or are 116
otherwise interested in the security of application container technologies. 117

This document assumes that readers have some operating system, networking, and security 118
expertise, as well as expertise with virtualization technologies (hypervisors and virtual 119
machines). Because of the constantly changing nature of application container technologies, 120
readers are encouraged to take advantage of other resources, including those listed in this 121
document, for more current and detailed information. 122

 123

Trademark Information 124

All registered trademarks or trademarks belong to their respective organizations. 125

 126

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

iv

 127
Executive Summary 128

Operating system (OS) virtualization provides a virtualized OS for each application to keep each 129
application isolated from all others on the server. Each application can only see and affect itself. 130
Recently, OS virtualization has become increasingly popular due to advances in its ease of use 131
and an increased focus in developer agility as a key benefit. Today’s OS virtualization 132
technologies are primarily focused on providing a portable, reusable, and automatable way to 133
package and run apps. The terms application container or simply container are frequently used 134
to refer to these technologies. 135

The purpose of the document is to explain the security concerns associated with container 136
technologies and make practical recommendations for addressing those concerns when planning 137
for, implementing, and maintaining containers. Many of the recommendations are specific to a 138
particular layer within the container technology stack, which is depicted in Figure 1. 139

Organizations should follow these recommendations to help ensure the security of their container 140
stack implementations and usage: 141

Tailor the organization’s processes to support the new way of developing, running, and 142
supporting applications made possible by containerization. 143

The introduction of containerization technologies might disrupt the existing culture and software 144
development methodologies within the organization. Traditional development practices, patching 145
techniques, and system upgrade processes might not directly apply to a containerized 146
environment, and it is important that the employees within the organization are willing to adapt 147
to a new model. New processes can consider and address any potential culture shock that is 148
introduced by the technology shift. Education and training can be offered to anyone involved in 149
the software development lifecycle. 150

Use container-specific OSes instead of general-purpose ones to reduce attack surfaces. 151

A container-specific OS is a minimalist OS explicitly designed to only run containers, with all 152
other services and functionality disabled, and with read-only file systems and other hardening 153
practices employed. When using a container-specific OS, attack surfaces are typically much 154
smaller than they would be with a general-purpose OS, so there are fewer opportunities to attack 155
and compromise a container-specific OS. Accordingly, whenever possible, organizations should 156
use container-specific OSes to reduce their risk. However, it is important to note that container-157
specific OSes will still have vulnerabilities over time that require remediation. 158

Automate compliance with container runtime configuration standards to minimize 159
vulnerabilities. 160

Organizations should have a configuration standard for each type of container runtime they use 161
that establishes the requirements for the container runtime’s configuration settings. Deviations 162
from the standard could create weaknesses that attackers can take advantage of to compromise 163
the container runtime or the containers running on top of the runtime. Accordingly, organizations 164

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

v

should use tools or processes that continuously assess container runtime configuration settings 165
and immediately act to correct any deviations from the approved standard. 166

 167

Figure 1: Container Technology Stack 168

 169

Group containers by relative sensitivity and only run containers of a single sensitivity level 170
on a single host OS kernel for additional defense in depth. 171

While most container runtime environments do an effective job of isolating containers from each 172
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 173
classification levels together on the same host OS. Grouping containers by purpose and 174
sensitivity provides additional defense in depth. By grouping containers in this manner, it will be 175

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

vi

much more difficult for an attacker who compromises one of the groups to expand that 176
compromise to other groups. This approach also ensures that any residual data, such as caches or 177
local volumes mounted for temp files, stays within its security zone. 178

In larger-scale environments with hundreds of hosts and thousands of containers, this grouping 179
must be automated to be practical to operationalize. Fortunately, common orchestration 180
platforms typically include some notion of being able to group apps together, and container 181
security tools can use attributes like container names and labels to enforce security policies 182
across them. 183

Adopt container-specific vulnerability management tools and processes for images to 184
prevent compromises. 185

Traditional vulnerability management tools make many assumptions about host durability, app 186
update mechanisms, and update frequencies that are fundamentally misaligned with a 187
containerized model. These tools are often unable to detect vulnerabilities within containerized 188
stacks, leading to a false sense of safety. Organizations should use tools that take the pipeline-189
based build approach and immutable nature of containers and images into their design to provide 190
more actionable and reliable results. 191

These tools and processes should take both image software vulnerabilities and configuration 192
settings into account. Organizations should adopt tools and processes to validate and enforce 193
compliance with secure configuration best practices for images. This should include having 194
centralized reporting and monitoring of the current compliance state of each image, and 195
preventing non-compliant images from being run. 196

Consider using hardware-based countermeasures to provide a basis for trusted computing. 197

Security should extend across all layers of the container stack. The current way of establishing 198
trusted computing for all layers is to use a hardware root of trust. Within this trust is stored 199
measurements of the host’s firmware, software, and configuration data. Validating the current 200
measurements against the stored measurements before booting the host provides assurance that 201
the host can be trusted. The chain of trust rooted in hardware can be extended to the OS kernel 202
and the OS components to enable cryptographic verification of boot mechanisms, system images, 203
container runtimes, and container images. Trusted computing provides the most secure way to 204
build, run, orchestrate, and manage containers. 205

 206

 207

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

vii

 208
Table of Contents 209

Executive Summary ... iv 210

1 Introduction .. 1 211

1.1 Purpose and Scope .. 1 212

1.2 Document Structure .. 1 213

2 Introduction to Application Containers .. 3 214

2.1 Container Architecture .. 3 215

2.2 Container Technical Capabilities .. 7 216

2.3 Container Attributes .. 8 217

2.4 Container Uses ... 10 218

2.5 The Container Lifecycle .. 10 219

2.5.1 Build phase ... 11 220

2.5.2 Distribution phase ... 12 221

2.5.3 Run phase .. 12 222

3 Major Risks in the Container Technology Stack ... 13 223

3.1 Operational Differences Between Containers and VMs 14 224

3.2 Host OS Risks .. 15 225

3.2.1 Improper user access rights ... 15 226

3.2.2 Host component vulnerabilities ... 15 227

3.3 Container Runtime Risks .. 15 228

3.3.1 Vulnerabilities within the runtime software .. 15 229

3.3.2 Unbounded network access from containers 16 230

3.3.3 Insecure container runtime configurations .. 16 231

3.3.4 Shared kernel ... 16 232

3.4 Image Risks .. 16 233

3.4.1 Image vulnerabilities ... 16 234

3.4.2 Image configuration .. 17 235

3.4.3 Embedded malware .. 17 236

3.4.4 Embedded secrets.. 17 237

3.4.5 Image trust ... 17 238

3.5 Registry Risks ... 17 239

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

viii

3.5.1 Insecure connections to registries .. 17 240

3.5.2 Stale images in registries ... 18 241

3.6 Orchestrator Risks .. 18 242

3.6.1 Unbounded administrative access .. 18 243

3.6.2 Weak or unmanaged credentials .. 18 244

3.6.3 Unmanaged inter-container network traffic ... 18 245

3.6.4 Mixing of workload sensitivity levels ... 18 246

4 Countermeasures for Mitigating the Major Risks .. 20 247

4.1 Hardware Countermeasures ... 20 248

4.2 Host OS Countermeasures ... 20 249

4.2.1 Vulnerabilities in core system components ... 21 250

4.2.2 Improper user access rights ... 21 251

4.3 Container Runtime Countermeasures ... 21 252

4.3.1 Vulnerabilities within the runtime software .. 21 253

4.3.2 Unbounded network access from containers 22 254

4.3.3 Insecure container runtime configurations .. 22 255

4.3.4 Shared kernel ... 22 256

4.3.5 Compromised containers .. 23 257

4.4 Image Countermeasures .. 24 258

4.4.1 Image vulnerabilities ... 24 259

4.4.2 Image configuration .. 24 260

4.4.3 Malware .. 24 261

4.4.4 Embedded secrets.. 25 262

4.4.5 Image trust ... 25 263

4.5 Registry Countermeasures ... 26 264

4.5.1 Insecure connections to registries .. 26 265

4.5.2 Stale images in registries ... 26 266

4.6 Orchestrator Countermeasures .. 26 267

4.6.1 Unbounded administrative access .. 26 268

4.6.2 Weak or unmanaged credentials .. 26 269

4.6.3 Mixing of workload sensitivity levels ... 26 270

5 Container Threat Scenario Examples ... 27 271

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

ix

5.1 Exploit of a Vulnerability within an Image .. 27 272

5.2 Exploit of the Container Runtime .. 27 273

5.3 Running a Poisoned Image ... 27 274

6 Secure Container Technology Stack Planning and Implementation 29 275

6.1 Initiation Phase ... 29 276

6.2 Planning and Design Phase .. 29 277

6.3 Implementation Phase .. 30 278

6.4 Operations and Maintenance Phase ... 31 279

6.5 Disposition Phase ... 31 280

7 Conclusion ... 32 281

 282
List of Appendices 283

Appendix A— NIST Resources for Security Outside the Container Stack 34 284

Appendix B— NIST Cybersecurity Framework and NIST SP 800-53 Security 285
Controls Related to Container Stack Security .. 35 286

Appendix C— Acronyms and Abbreviations .. 42 287

Appendix D— Glossary .. 43 288

Appendix E— References ... 44 289

 290

List of Tables and Figures 291

Figure 1: Container Technology Stack .. v 292

Figure 2: Virtual Machine and Container Architectures ... 4 293

Figure 3: Interactions of Container Deployment Components ... 7 294

Figure 4: Container Lifecycle Phases .. 11 295

Figure 5: Container Technology Stack .. 13 296

Table 1: NIST Resources for Security Outside the Container Stack 34 297

Table 2: Security Controls from NIST SP 800-53 for Container Stack Security 35 298

Table 3: NIST SP 800-53 Controls Supported by Container Stacks 39 299

Table 4: NIST Cybersecurity Framework Subcategories Supported by Container Stacks300
 ... 40 301

 302

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

1

1 Introduction 303

1.1 Purpose and Scope 304

The purpose of the document is to explain the security concerns associated with application 305
container technologies, also known as containers, and make practical recommendations for 306
addressing those concerns when planning for, implementing, and maintaining containers. The 307
recommendations are intended to apply to most or all application container technologies. 308

All forms of virtualization other than application containers, such as virtual machines, are 309
outside the scope of this document. 310

In addition to application container technologies, the term “container” is used to refer to concepts 311
such as software that isolates enterprise data from personal data on mobile devices, and software 312
that may be used to isolate applications from each other on desktop operating systems. While 313
these may share some attributes with application container technologies, they are out of scope for 314
this document. 315

This document assumes readers are already familiar with securing the technologies supporting 316
and interacting with application container technologies. These include the following: 317

 The layers under application container technologies, including hardware, hypervisors, and 318
operating systems; 319

 The client endpoint devices that use the applications within the containers; and 320

 The administrator endpoints used to manage the applications within the containers and the 321
containers themselves. 322

Appendix A contains pointers to resources with information on securing these technologies. 323
Sections 3 and 4 offer additional information on security considerations for container-specific 324
operating systems. All further discussion of securing the technologies listed above is out of scope 325
for this document. 326

1.2 Document Structure 327

The remainder of this document is organized into the following sections and appendices: 328

 Section 2 introduces containers, including their architectures, technical capabilities, 329
attributes, and uses. 330

 Section 3 explains the major risks in the container technology stack. 331

 Section 4 discusses possible countermeasures for the risks identified in Section 3 and makes 332
recommendations for selecting and using countermeasures. 333

 Section 5 defines threat scenario examples for containers. 334

 Section 6 presents actionable information for planning, implementing, operating, and 335
maintaining a container technology stack. 336

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

2

 Section 7 provides a conclusion for the document. 337

 Appendix A lists NIST resources for securing systems and system components outside the 338
container technology stack. 339

 Appendix B lists the NIST Special Publication 800-53 security controls and NIST 340
Cybersecurity Framework subcategories that are most pertinent to application container 341
technologies, explaining the relevancy of each. 342

 Appendix C provides an acronym and abbreviation list for the document. 343

 Appendix D presents a glossary of selected terms from the document. 344

 Appendix E contains a list of references for the document. 345

 346

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

3

2 Introduction to Application Containers 347

NIST Special Publication (SP) 800-125 [1] defines virtualization as “the simulation of the 348
software and/or hardware upon which other software runs.” Virtualization has been in use for 349
many years, but it is best known for enabling cloud computing. In cloud environments, hardware 350
virtualization is used to run many instances of operating systems (OS) on a single physical server 351
while keeping each instance separate. This allows more efficient use of hardware and supports 352
multi-tenancy. 353

In hardware virtualization, each OS instance interacts with virtualized hardware. Another form of 354
virtualization known as operating system virtualization has a similar concept; it provides a 355
virtualized OS for each application to keep each application isolated from all others on the 356
server. Each application can only see and affect itself. 357

Until recently, OS virtualization has not been widely used because hardware virtualization was 358
considered easier to set up and run in order to achieve isolation. However, OS virtualization has 359
become increasingly popular due to advances in its ease of use and an increased focus in 360
developer agility as a key benefit. Today’s OS virtualization technologies are primarily focused 361
on providing a portable, reusable, and automatable way to package and run apps. The terms 362
application container or simply container are frequently used to refer to these technologies. The 363
term is meant as an analogy to shipping containers, which provide a standardized way of 364
grouping disparate contents together while isolating them from each other. 365

Containers themselves are not new; various implementation of containers have existed since the 366
early 2000s, starting with Solaris Zone and FreeBSD jails. Support initially became available in 367
Linux in 2008 with the Linux Container (LXC) technology built into nearly all modern 368
distributions. More recently, projects such as Docker and rkt have provided additional 369
functionality designed to make OS component isolation features easier to use and scale. 370
Container technologies are also available on the Windows platform beginning with Windows 371
Server 2016. The fundamental architecture of all these implementations is consistent enough so 372
that this document can discuss containers in detail while remaining implementation agnostic. 373

This section provides an introduction to containers for servers. First, it explains the architecture 374
of containers, including all the major components typically found in a container implementation. 375
Next, it describes the major technical capabilities and fundamental attributes of containers. 376
Finally, the section briefly lists common uses for containers. 377

2.1 Container Architecture 378

Explaining the architecture of containers is made easier by comparing them with the architecture 379
of virtual machines (VMs) from hardware virtualization technologies, which many readers are 380
already familiar with. Figure 2 shows the VM architecture and two container architectures, one 381
without VMs and one with. 382

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

4

 383

 384

Figure 2: Virtual Machine and Container Architectures 385

Both VMs and containers allow multiple apps to share the same physical infrastructure, but they 386
use different methods of separation. VMs use a hypervisor that provides hardware-level isolation 387
of resources across VMs. Each VM sees its own virtual hardware and includes a complete guest 388
OS in addition to the app and its data. VMs allow different OSes, such as Linux and Windows, to 389
share the same physical hardware. 390

With containers, multiple apps share the same OS instance but are segregated from each other. 391
Containers share the same OS kernel, so they cannot be run without a host OS present. In many 392
cases, users will deploy containers inside of VMs, but this is not a requirement. Also, containers 393
are OS-family specific; a Linux host can only run containers built for Linux, and a Windows host 394
can only run Windows containers. 395

Containers can be run on an OS installed on “bare metal”, as shown in the middle of Figure 2, or 396
an OS that runs within a VM, as shown on the right side of Figure 2. While containers are 397
sometimes thought of as the next phase of virtualization, surpassing hardware virtualization, the 398
reality for most organizations is less about revolution than evolution. Containers and hardware 399
virtualization not only can, but very frequently do, coexist well and actually enhance each other’s 400
capabilities. VMs provide many benefits, such as strong isolation, OS automation, and a wide 401
and deep ecosystem of solutions. Organizations do not need to make a false choice between 402
containers and VMs. Instead, organizations can continue to use VMs to deploy, partition, and 403
manage their hardware, while using containers to package their apps and utilize each VM more 404
efficiently. 405

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

5

The container technology stack, depicted in Figure 2, includes the following components: 406

• Host operating system: Containers share a common kernel that is part of the host 407
operating system. It sits below the containers and provides OS capabilities to them. The 408
host OSes used for running containers can generally be categorized into two types: 409
o General-purpose OSes like Red Hat Enterprise Linux, Ubuntu, and Windows Server 410

that can be used for running many kinds of apps and can have container-specific 411
functionality added to them. 412

o Container-specific OSes, like CoreOS [2], Project Atomic [3], and Google Container-413
Optimized OS [4], which are minimalistic OSes explicitly designed to only run 414
containers. They typically do not come with package managers, and they actively 415
discourage running applications outside containers. A container-specific OS includes 416
the container runtime environment and a subset of core system administration tools. 417
Often, these OSes use a read-only file system design to reduce the likelihood of an 418
attacker being able to persist data within them, and they also utilize a simplified 419
upgrade process since there is little concern around application compatibility. 420

• Container runtime: The layer above the host OS is the container runtime. It abstracts 421
the underlying host OS from each container, such that each container sees its own 422
dedicated view of the OS and is isolated from other containers running concurrently. The 423
container runtime also provides management tools and application programming 424
interfaces (APIs) to allow users to specify how to run containers on a given host. The 425
runtime abstracts the complexity of manually creating all the necessary configurations 426
and simplifies the process of starting, stopping, and operating containers. Examples of 427
runtimes include Docker [5], LXC [6], rkt [7], and the Open Container Initiative Daemon 428
[8]. 429

• Images: Images are packages that contain all the files required to run a container. For 430
example, an image to run Apache would include the httpd binary, along with associated 431
libraries and configuration files. An image is executed within a container. Unlike a VM, 432
an image does not contain an OS because that is provided by the host OS. Images are 433
typically designed to be portable across machines and environments, so that an image 434
created in a development lab can be easily moved to a test lab for evaluation, then copied 435
into a production environment to run. Images often use techniques like layering and copy 436
on write (in which shared master images are read only and changes are recorded to 437
separate files) to minimize their size on disk and improve operational efficiency. 438

• Registry: Images are typically stored in central locations to make it easy to share, find, 439
and reuse them across hosts. Registries are services that allow developers to easily store 440
images as they are created, tag and catalog images to aid in discovery and reuse, and find 441
and reuse images that others have created. When an image needs to be promoted from 442
dev to test or production, the image can be pulled from this central registry. Registries are 443
effectively special purpose file sharing apps and may be self-hosted or consumed as a 444
service, such as with Amazon EC2 Container Registry [9] or Docker Hub [10]. 445

• Microservice: Sets of containers that work together to compose an application are 446
referred to as microservices. Unlike traditional architectures, which divide an application 447
into a few tiers and have a component for each tier, in a container architecture a single 448
app is often divided into many more components. With this modular approach, each 449
container may have a single well-defined function. This allows more granular scaling of 450

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

6

the app because additional resources can be provided just to the containers with the 451
function that needs them. It also makes iterative development easier because functionality 452
is more self-contained. 453

• Orchestrators: Multiple container hosts can be grouped together and centrally managed 454
by orchestration tools, also known as orchestrators. These are responsible for monitoring 455
resource consumption, job execution, and machine health across multiple servers and/or 456
VMs. This abstraction allows a developer to simply describe how many containers need 457
to be running a given image and what resources, such as memory, processing, and disk 458
need to be allocated to each. The orchestrator knows what is available within the cluster 459
and dynamically assigns which containers will run on which hosts. Further, the 460
orchestrator will monitor the health of hosts and containers and, depending on its 461
configuration, may automatically restart containers on new hosts if the hosts they were 462
initially running on failed. Many orchestrators can also enable cross-host container 463
networking and service discovery. Examples of orchestrators include Kubernetes [11], 464
Mesos [12], and Docker Swarm [13]. 465

These components all play roles in running a containerized app. For example, in Figure 2, 466
assume the user wants to run an app with three images. Rather than manually running containers 467
for each image, the user tells the orchestrator the attributes of the app, including how many 468
instances of each image is required and how many resources each container requires. The 469
orchestrator knows the state of the machines in the cluster, including availability and resource 470
consumption of each. The orchestrator then pulls the required images from the registry and runs 471
them on containers across the cluster based on resource availability. 472

Note that all these components are not necessary to run containers. For example, a small, simple 473
container implementation could omit a full-fledged orchestrator. 474

 475

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

7

 476

Figure 3: Interactions of Container Deployment Components 477

2.2 Container Technical Capabilities 478

The technical capabilities of containers vary by host OS. Containers are fundamentally a 479
mechanism to give each app a unique view of a single OS, so the tools for achieving this 480
separation are largely OS family-dependent. For example, the methods used to isolate processes 481
from each other differ between Linux and Windows. However, while the underlying 482
implementation may be different, container runtimes provide a common interface format that 483
largely abstracts these differences from users. 484

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

8

All container platforms require the following technical capabilities provided by the host OS: 485

• Namespace isolation, which limits the resources a container may interact with. This 486
includes file systems, network interfaces, interprocess communications, host names, user 487
information, and processes. Namespace isolation ensures that applications and processes 488
inside a container only see the physical and virtual resources allocated to that container. 489
For example, if you run ‘ps –A’ inside a container running Apache on a server with many 490
other containers running other apps, you would only see httpd listed in the results. 491
Namespace isolation also allows individual containers to have their own IP addresses and 492
interfaces. Containers on Linux use technologies like masked process identities to 493
achieve namespace isolation, whereas on Windows, object namespaces are used. 494

• Resource isolation, which limits how much of a host’s resources a given container can 495
consume. For example, if your host OS has 10 gigabytes (GB) of total memory, you may 496
wish to allocate 1 GB each to nine separate containers. No container should be able to 497
interfere with the operations of another container, so resource isolation ensures that each 498
container can only utilize the amount of resources assigned to it. On Linux, this is 499
accomplished primarily with control groups (cgroups)1, whereas on Windows job objects 500
serve a similar purpose. 501

• Filesystem virtualization, which allows multiple containers to share the same physical 502
storage without the ability to access or alter the storage of other containers. While 503
arguably similar to namespace isolation, filesystem virtualization is called out separately 504
because it also often involves optimizations to ensure that containers are efficiently using 505
the host’s storage through techniques like copy on write. For example, if multiple 506
containers using the same image are running Apache on a single host, filesystem 507
virtualization ensures that there is only one copy of the httpd binary stored on disk. If one 508
of the containers modifies files within itself, only then will those copies be written out to 509
storage as unique bits. On Linux, these capabilities are provided by technologies like the 510
Advanced Multi-Layered Unification Filesystem (AUFS), whereas on Windows they are 511
an extension of the NT File System (NTFS). 512

2.3 Container Attributes 513

Container technologies generally share several fundamental attributes: 514

• Portable. There are two main aspects to this: 515
o Portability across the development lifecycle. The images used to create containers can 516

be built directly by app developers and then moved into test and production without 517
modification. 518

o Portability across underlying platforms. The same container image should be able to 519
run broadly across a family of host OSes and across any cloud provider that supports 520
them. 521

• Minimal. A container only includes the specific software required to run the app within 522
it. A container only includes the executables and libraries required by the app itself; all 523

1 cgroups are collections of processes that can be managed independently, giving the kernel the software-based ability to
meter subsystems such as memory, processor usage, and disk I/O. Administrators can control these subsystems either
manually or programmatically.

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

9

other OS functionality is provided by the underlying host OS. Frequently, containers are 524
single process entities and a given container only exists to run one app. Multiple 525
containers then work together in a microservice to compose more complex apps. 526

• Declarative. Most container technologies have a declarative way of describing the 527
components and requirements for the app. For example, an image for a web server would 528
include not only the executables for the web server, but also some parseable data to 529
describe how the web server should run, such as the ports it listens on or the 530
configuration parameters it uses. 531

• Immutable. Most modern container technologies implement the concept of immutability. 532
In other words, the containers themselves are stateless entities that are deployed but not 533
changed. When a running container needs to be upgraded or have its contents changed, it 534
is simply destroyed and recreated with a new image containing the updates. This provides 535
the ability for developers and support engineers to make and push changes to applications 536
at a much faster pace. Immutability is a fundamental operational difference between 537
containers and hardware virtualization. Traditional VMs are typically run as stateful 538
entities that are deployed, reconfigured, and upgraded throughout their life. 539

The immutable nature of containers also has implications for data persistence. Rather than 540
intermingling the app with the data it uses, containers stress the concept of isolation. Data 541
persistence should be achieved not through simple writes to the container file system, but instead 542
by using external, persistent data stores such as databases or cluster-aware persistent volumes. 543
Because containers are ephemeral, the data they use should be stored outside of the containers 544
themselves so that when the next version of an app replaces the containers running the existing 545
version, all data is still available to the new version. 546

Modern container technologies have largely emerged along with the adoption of DevOps 547
(development and operations) practices that emphasize close coordination between development 548
and operational teams. The portable and declarative nature of containers is particularly well 549
suited to these practices because they allow an organization to have great consistency between 550
development, test, and production environments. Organizations often utilize continuous 551
integration processes to put their apps into containers directly in the build process itself, such that 552
from the very beginning of the app’s lifecycle, there is guaranteed consistency of its runtime 553
environment. 554

Containers increase the effectiveness of build pipelines due to the immutable nature of container 555
images. Containers shift the time and location of production code installation. In non-container 556
systems, application installation happens in production (i.e., at server runtime), typically by 557
running hand-crafted scripts that manage installation of application code (e.g., programming 558
language runtime, dependent third-party libraries, init scripts, and OS tools) on servers. This 559
means that any tests running in a pre-production build pipeline (and on developers’ workstations) 560
are not testing the actual production artifact, but a best-guess approximation contained in the 561
build system. This approximation of production tends to drift from production over time, 562
especially if the teams managing production and the build system are different. This scenario is 563
the embodiment of the “it works on my machine” problem. 564

Using containers, the full application installation happens in the build system (i.e., at compile-565
time). The build system creates the full production artifact (i.e., the container image), which is an 566

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

10

immutable snapshot of all userspace requirements of the application (i.e., programming language 567
runtime, dependent third-party libraries, init scripts, and OS tools). In production the container 568
image constructed by the build system is simply downloaded and run. This solves the “works on 569
my machine” problem since the developer, build system, and production all run the same 570
immutable artifact. 571

Modern container technologies often also emphasize reuse, such that a container image created 572
by one developer can be easily shared and reused by other developers, either within his own 573
organization or across the world. Registry services provide centralized image sharing and 574
discovery services to make it easy for developers to find and reuse software created by others. 575
This ease of use is also leading many popular software vendors and projects to use containers as 576
a way to make it easy for customers to find and quickly run their software. For example, rather 577
than directly installing an app like MongoDB on the host OS, a user can simply run a container 578
image of MongoDB. Further, since the container runtime isolates containers from one another 579
and the host OS, these apps can be run more safely and reliably, and users do not have to worry 580
about them disturbing the underlying host OS. 581

2.4 Container Uses 582

Like any other technology, containers are not a panacea. They are a valuable tool for many 583
scenarios, but are not necessarily the best choice for every scenario. For example, an 584
organization with a large base of legacy off the shelf software is unlikely to be able to take 585
advantage of containers for running most of that software since the vendors may not support it. 586
However, most organizations will have multiple valuable uses for containers. Examples include: 587

• Agile development, where apps are frequently updated and deployed. The portability and 588
declarative nature of containers makes these frequent updates more efficient and easier to 589
test. This allows organizations to accelerate their innovation and deliver software more 590
quickly. This also allows vulnerabilities in application code to be fixed and the updated 591
software tested and deployed much faster. 592

• ‘Scale out’ scenarios, where an app may need to have many new instances deployed or 593
decommissioned quickly depending on the load at a given point in time. The 594
immutability of containers makes it easier to reliably scale out instances, knowing that 595
each instance is exactly like all the others. Further, because containers are typically 596
stateless, it is easier to decommission them when they are no longer needed. 597

• Net new apps, where developers can build for a microservices architecture from the 598
beginning, ensuring more efficient iteration of the app and simplified deployment. 599

2.5 The Container Lifecycle 600

Containers do not exist in a vacuum; they are typically used as part of the overall lifecycle of an 601
app and thus interact with other systems and user personas. Figure 4 shows the basic lifecycle 602
phases. Because organizations are typically building and deploying many different apps at once, 603
these lifecycle phases often occur concurrently within the same organization and should not be 604
seen as progressive stages of maturity. Instead, think of them as cycles in an engine that is 605
continuously running. In this metaphor, each app is a cylinder within the engine, and different 606
apps may be at different phases of this lifecycle at the same time. 607

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

11

This section refers to tasks performed by development and operation personas during the 608
lifecycle. Many organizations have merged their development and operations teams into 609
combined DevOps teams that seek to increase the integration between building and running apps. 610
Thus, the references in this section to these personas are focused on the types of job tasks being 611
performed, not on strict titles or team organizational structures. 612

 613

 614

Figure 4: Container Lifecycle Phases 615

2.5.1 Build phase 616

The build phase is the portion of the lifecycle in which app components are compiled, collected, 617
and placed into images. The build phase is mostly driven by developers who are working on 618
creating or updating apps and packaging them in containers. The build phase typically uses build 619
management and automation tools, such as Jenkins [14] and TeamCity [15], to assist with this 620
“continuous integration” process. These tools take the various libraries, binaries, and other 621
components of an application, perform testing on them, and then assemble images out of them. 622
The build phase would normally begin with a developer creating a manifest for the app that 623
describes how to build an image for it, and end with the build automation tool creating a ready-624
to-run image of the app. 625

Build Phase
•Personas: Developers
•Example tooling: Jenkins, TeamCity
•Phase starts with: creation of an image

from app components
•Phase ends with: pushing the image to a

registry

Distribution Phase
•Personas: Operations
•Example tooling: Docker Registry, Amazon

EC2 Container Registry
•Phase starts with: storage of an image

pushed by a developer
•Phase ends with: image pulled to run

within a container

Run Phase
•Personas: Operations
•Example tooling: Kubernetes, DC/OS,

Docker
•Phase starts with: pulling an image from a

registry and orchestrating its deployment

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

12

2.5.2 Distribution phase 626

Once images are created by developers, they need to be stored in a predictable location they can 627
be deployed from. These registries are essentially just file storage for images, wrapped in APIs 628
that enable development and operations teams to automate common tasks like uploading new 629
images, tagging images for identification, and downloading images for deployment. Registries, 630
such as Docker Trusted Registry [16], Quay Container Registry [17], and Amazon EC2 631
Container Registry [9], are typically where developers output their images to at the end of the 632
build phase. Once stored in the registry, they can be easily pulled and then run by operations 633
personas across any environment in which they run containers. This is another example of the 634
portability benefits of containers; the build phase may occur in a public cloud provider, which 635
pushes an image to a registry hosted in a private cloud, which is then used to distribute images 636
for running the app in a third location. 637

The distribution phase typically uses extensive automation to reduce the manual activities 638
associated with uploading and deploying images. For example, organizations may have triggers 639
in the build phase that automatically push images to a registry once tests pass. The registry may 640
have further triggers that automate the deployment of new images once they have been added. 641
This automation enables faster iteration on projects with more consistent results. 642

2.5.3 Run phase 643

Once an image is stored in a registry, it is ready to be pulled and run within a container. 644
Operations personas, or the automation they create, typically perform the tasks associated with 645
deploying an image from a registry into a set of containers. This deployment process is what 646
actually results in a usable version of the app, running and ready to respond to requests. When an 647
image is deployed into a container, the image itself is not changed, but instead a copy of it is 648
placed within the container and transitioned from being a dormant set of app code to a running 649
instance of the app. Images are typically deployed from registries via orchestration tools, such as 650
Kubernetes [11] or DC/OS [18], that are configured to pull the most up-to-date version of an 651
image from the registry so that the app is always up-to-date. This “continuous delivery” 652
automation enables developers to simply build a new version of the image for their app, push it 653
to the registry, and then rely on the run phase automation tooling to deploy it to the target 654
environment. 655

 656

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

13

3 Major Risks in the Container Technology Stack 657

This section identifies and analyzes the major risks in the container technology stack. It uses the 658
data-centric system threat modeling approach described in NIST SP 800-154 [19] to examine a 659
typical container stack as depicted in Figure 5. Because this analysis looks at the stack only, and 660
not the technologies below the stack, it is applicable to most container deployments, whether 661
using VMs or running on bare metal, at a public cloud provider or within an organization’s 662
onsite datacenter. 663

 664

 665

Figure 5: Container Technology Stack 666

This section begins by discussing the most important operational differences between VMs and 667
containers, which all have security implications. The rest of the section walks through the 668

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

14

container technology stack from lowest layer to highest layer, identifying and analyzing major 669
risks relevant to each layer. Appendix A contains pointers to references for securing systems and 670
system components outside the container technology stack. 671

3.1 Operational Differences Between Containers and VMs 672

While there are many technical differences between containers and VMs, there are also 673
significant operational differences. These operational differences impact many aspects of 674
container security. 675

• Many more entities. When an app is deployed via containers and microservices, there 676
are many more discrete components for the app than if that app were run in a more 677
monolithic, VM-centric model. For example, a simple two-tiered web app running in 678
VMs may only have a cluster of web server VMs on the front end and a cluster of 679
database VMs on the backend. This same app, decomposed into microservices, may have 680
many different front end containers, each running a different part of the web portion of 681
the app, as well as multiple database and cache instances on the backend. These 682
microservices make iteration and scaling easier, but result in more objects to understand, 683
manage, and secure. Security tools and operations must be adapted to deal with this larger 684
number of objects. 685

• Much greater rate of change. One of the primary drivers for customers to adopt 686
containers is the agility it gives them from a development standpoint, making it easier 687
and faster to respond to business needs through rapid iteration of apps. Organizations 688
may go from deploying a new version of their app every quarter, to deploying new 689
components weekly or daily. Legacy security tools and processes often assume far less 690
dynamic operations and may need to be adjusted to adapt to the rate of change in 691
containerized environments. 692

• Security is largely the responsibility of the developer. Good security practices in 693
development have always been a core part of an effective security strategy. However, in 694
the past, organizations often had a clear differentiation between development and 695
operations, and the operations team often had the responsibility of monitoring and 696
maintaining the apps after deployment. Because containers are built directly from images 697
created by developers, the responsibility for securing those images is much further 698
‘upstream’ with containers. For example, instead of the operations team patching a web 699
server with a vulnerability, the developer is now responsible for performing the patching 700
within the images and providing the new versions of the images to be run. This change in 701
responsibilities often requires much greater coordination and cooperation between 702
development and operations teams. 703

• Security must be as portable as the containers. One of the key factors driving adoption 704
of containers is their portability. Developers find great value in being able to move 705
containers and images across many different environments, such as their developer 706
workstation, a public cloud test environment, and a private cloud production 707
environment. Unlike VMs, in which environments were more static and predictable, 708
developers may move containers around many different locations during the course of 709
normal operations. Thus, the security tools and processes used to protect them must not 710

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

15

make assumptions about specific cloud providers, host OSes, network topologies, or 711
other aspects of the runtime environment which may frequently change. 712

• Networking is much more ephemeral. VMs and bare metal servers are typically 713
allocated static IP addresses by an administrator, and those addresses remain relatively 714
consistent over time. For example, a given VM may be assigned an IP address when it is 715
originally created and use that same IP address for the months or years it continues to 716
run. Conversely, containers are typically allocated IP addresses via whatever 717
orchestration tool is being used. The IP addresses assigned to a given container are not 718
typically known in advance, and no administrator is normally involved in assigning them. 719
Because containers are created and destroyed much more frequently than VMs, these IP 720
addresses change frequently over time as well, without human involvement. This makes 721
it difficult or impossible to protect containers using security techniques that rely on static 722
IP addresses, such as firewall rulesets filtering traffic based on IP address. 723

3.2 Host OS Risks 724

3.2.1 Improper user access rights 725

Container-specific OSes are typically used in conjunction with orchestrators that provide for 726
container placement and scaling. In these deployments, the OS is typically not optimized to 727
support multiuser scenarios since interactive user logon should be rare. If organizations rely on 728
manual configuration and management, users may have greater access to the containerized apps 729
they host than necessary. 730

3.2.2 Host component vulnerabilities 731

Container-specific OSes have a much smaller attack surface than that of general-purpose OSes. 732
For example, they do not contain libraries and package managers that enable a general-purpose 733
OS to directly run database and web server apps. However, even on container-specific OSes, 734
there are foundational system components provided by the host OS—for example, the 735
cryptographic libraries used to authenticate remote connections and the kernel primitives used 736
for general process invocation and management. Like any other software, these components can 737
have vulnerabilities and, because they exist low in the stack, these vulnerabilities can impact all 738
the containers and applications that run on these hosts. 739

3.3 Container Runtime Risks 740

3.3.1 Vulnerabilities within the runtime software 741

While relatively rare, these vulnerabilities can be particularly dangerous if they allow ‘container 742
escape’ scenarios in which malicious software is able to use those vulnerabilities to attack 743
resources outside of the container in which it originated, including other containers and the host 744
OS itself. An attacker may also be able to exploit vulnerabilities to compromise the runtime 745
software itself, and then alter that software so it allows the attacker to access containers, monitor 746
container-to-container communications, etc. 747

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

16

3.3.2 Unbounded network access from containers 748

By default in most container runtimes, individual containers are able to access each other and the 749
host over the network. If a container is compromised and acting maliciously, allowing this 750
network traffic may expose other resources in the environment to risk. For example, a 751
compromised container may be used to scan the network it is connected to in order to find other 752
weaknesses for an attacker to exploit. 753

Egress network access is more complex to manage in a containerized environment because so 754
much of the connection is virtualized between containers. Thus, traffic from one container to 755
another may appear simply as encapsulated packets on the wire without an understanding of the 756
ultimate source, destination, or payload. Tools and operational processes that are not container 757
aware are not able to inspect this traffic or determine whether it represents a threat. 758

3.3.3 Insecure container runtime configurations 759

Container runtimes are complex software and typically expose many configurable options to 760
administrators. Often, configuring them improperly can lower the relative security of the system. 761
For example, on Linux container hosts, the set of allowed system calls is often limited by default 762
to only those required for safe operation of containers. If this list is widened, it may expose the 763
runtime and host to increased risk from a compromised container. 764

Another example of an insecure runtime configuration is allowing containers to mount sensitive 765
directories on the host. Containers should rarely make changes to the host file system and should 766
almost never make changes to locations like /boot or /etc that control the basic functionality of 767
the host OS. If a container is allowed to make changes to these paths, a compromised container 768
could potentially be used to elevate privileges and attack the host itself as well as other 769
containers running on the host. 770

3.3.4 Shared kernel 771

While containers provide strong software-level isolation of resources, the use of a shared kernel 772
invariably results in a larger inter-object attack surface than seen with hypervisors. In other 773
words, the level of isolation provided by container runtimes is not as high as that provided by 774
hypervisors. 775

3.4 Image Risks 776

3.4.1 Image vulnerabilities 777

Because images are effectively static archive files that include all the components used to run a 778
given application, the components within this image may often be out of date and missing critical 779
security updates. For example, if an image is created with fully up-to-date components, that 780
image may continue to be free from vulnerabilities for days or weeks after its creation. 781
However, at some point in the future the components included in that image will likely have 782
vulnerabilities discovered in them, and thus the image overall will no longer be up-to-date. 783

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

17

Unlike traditional operational patterns in which deployed software is updated ‘in the field’ on the 784
systems it runs on, with containers these updates must be made upstream in the images 785
themselves, which are then redeployed. Thus, a common risk in containerized environments is 786
deployed images having vulnerabilities because the version of the image being run does not 787
include all the necessary updates. 788

3.4.2 Image configuration 789

In addition to software defects, images may also have configuration defects as well. For 790
example, an image could be configured to run as root or include executables set to run with 791
excessive privileges. Much like in a traditional server or VM, where a poor configuration can 792
still expose a fully up-to-date system to attack, so too can a poorly configured image increase 793
risk even if all the included components are up-to-date. 794

3.4.3 Embedded malware 795

Because images are just collections of files packaged together, malicious files could be included 796
intentionally or inadvertently within them. Organizations often build images from base layers 797
provided by third parties of which the full provenance is not known. Especially in these cases, an 798
organization can be exposed to risk by malware being embedded within the image. This malware 799
would have the same set of capabilities as any other component within the image and thus could 800
be used to attack other containers or hosts within the environment. 801

3.4.4 Embedded secrets 802

Many applications require secrets to enable secure communication between various components. 803
For example, a web application may need a username and password to connect to a backend 804
database. When an app is packaged in a container, these secrets can be embedded directly into 805
the image. However, this practice creates a security risk because anyone with access to the image 806
file can easily parse it to learn these secrets. Potential sensitive data includes connection strings, 807
SSH private keys, and x.509 private keys. 808

3.4.5 Image trust 809

One of the most common high-risk scenarios in any environment is the execution of untrusted 810
software. The portability and ease of reuse of containers increase the temptation for teams to run 811
images from external sources that may not be well validated or trustworthy. For example, when 812
troubleshooting a problem with a web application, a user may find another version of that 813
application available in an image provided by a third party. Using this externally provided image 814
results in the same types of risks that external software traditionally has, such as introducing 815
malware, leaking data, or including components with vulnerabilities. 816

3.5 Registry Risks 817

3.5.1 Insecure connections to registries 818

Images often contain sensitive components like an organization’s line of business application. 819
While, ideally, images should not include secrets or user data, the software itself is often 820

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

18

proprietary to an organization and should be protected in transit. If connections to registries are 821
performed over insecure channels, the contents of images are subject to the same confidentiality 822
risks as any other data transmitted in the clear. 823

3.5.2 Stale images in registries 824

Because registries are typically the source location for all the images an organization deploys, 825
over time the set of images they store can include many vulnerable, out-of-date versions. While 826
these vulnerable images do not directly pose a threat simply by being stored in the registry, they 827
increase the likelihood of user error resulting in the deployment of a known-bad version. 828

3.6 Orchestrator Risks 829

3.6.1 Unbounded administrative access 830

Historically, many orchestration tools assumed that all users that interacted with them were 831
administrators and that those administrators should have environment-wide control. However, in 832
many cases, a single orchestrator may run many different apps, each managed by different teams, 833
and with different sensitivity levels. If the access provided to users and groups is not scoped to 834
their specific needs, a malicious or careless user could affect or subvert the operation of other 835
containers managed by the orchestrator. 836

3.6.2 Weak or unmanaged credentials 837

Orchestration tools often include their own authentication directory, which may be separate from 838
the typical directories already in use within an organization. This can lead to weaker account 839
management practices and ‘orphaned’ accounts in the orchestrator because these systems are less 840
rigorously managed. Because many of these accounts are highly privileged within the 841
orchestrator, compromise of them can lead to systemwide compromise. 842

3.6.3 Unmanaged inter-container network traffic 843

In most containerized environments, traffic between individual nodes is routed over a virtual 844
overlay network. This overlay network is typically managed by the orchestration tool and is 845
often opaque to existing network security and management tools. For example, instead of seeing 846
database queries being sent from a web server container to a database container on another host, 847
traditional network filters would only see encrypted packets flowing between two hosts, with no 848
visibility into the actual container endpoints, nor the traffic being sent. This can create a security 849
‘blindness’ scenario in which organizations are unable to effectively monitor traffic within their 850
own networks. 851

3.6.4 Mixing of workload sensitivity levels 852

Orchestrators are typically focused primarily on driving the scale and density of workloads. This 853
means that, by default, they can place workloads of differing sensitivity levels on the same host. 854
For example, in a default configuration, an orchestrator may place a container running a public-855
facing web server on the same host as one processing sensitive financial data, simply because 856

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

19

that host happens to have the most available resources at the time of deployment. This can put 857
the container processing sensitive financial data at significantly greater risk of compromise. 858

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

20

4 Countermeasures for Mitigating the Major Risks 859

This section discusses possible countermeasures for the major risks identified in Section 3 and 860
makes recommendations for selecting and using countermeasures. 861

4.1 Hardware Countermeasures 862

Software-based security is regularly defeated, as acknowledged in NIST SP 800-164 [20]. NIST 863
defines trusted computing requirements in NIST SPs 800-147 [21], 800-155 [22], and 800-164. 864
To NIST, “trusted” means that the platform behaves as it is expected to: the software inventory is 865
accurate, the configuration settings and security controls are in place and operating as they 866
should, and so on. “Trusted” also means that it is known that no unauthorized person has 867
tampered with the software or its configuration on the hosts. 868

The currently available way to provide trusted computing is to: 869

1. Measure firmware, software, and configuration data before it is executed using a Root of 870
Trust for Measurement (RTM). 871

2. Store those measurements in a hardware root of trust, like a trusted platform module 872
(TPM). 873

3. Validate that the current measurements match the expected measurements. If so, it can be 874
attested that the platform can be trusted to behave as expected. 875

TPM-enabled devices can check the integrity of the machine during the boot process, enabling 876
protection and detection mechanisms to function in hardware, at pre-boot, and in the secure boot 877
process. This same trust and integrity assurance can be extended beyond the OS and the boot 878
loader to the container runtimes and applications. 879

The increasing complexity of systems and the deeply embedded nature of today’s threats means 880
that security should extend across all the layers of the container stack, starting with the hardware 881
and firmware. This would form a distributed trusted computing model and provide the most 882
trusted and secure way to build, run, orchestrate, and manage containers. 883

The trusted computing model should start with measured/secure boot, which provides a verified 884
system platform, and build a chain of trust rooted in hardware and extended to the bootloaders, 885
the OS kernel, and the OS components to enable cryptographic verification of boot mechanisms, 886
system images, container runtimes, and container images. In the container stack, these techniques 887
are currently applicable at the hardware, hypervisor, and host OS layers, with early work in 888
progress to apply these to container-specific components. 889

4.2 Host OS Countermeasures 890

For customers using container-specific OSes, the threats are typically more minimal to start with 891
since the OSes are specifically designed to host containers and have other services and 892
functionality disabled. Further, because these optimized OSes are designed specifically for 893
hosting containers, they typically feature read-only file systems and employ other hardening 894
practices by default. Whenever possible, organizations should use these minimalistic OSes to 895
reduce their attack surfaces and mitigate the typical risks and hardening activities associated with 896

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

21

general-purpose OSes. This section is thus focused primarily on risks relevant to these container-897
optimized OSes. 898

4.2.1 Vulnerabilities in core system components 899

Organizations should implement management practices and tools to validate the versioning of 900
components provided for base OS management and functionality. Even though container-901
specific OSes have a much more minimal set of components than general-purpose OSes, they 902
still do have vulnerabilities and still require remediation. Organizations should use tools 903
provided by the OS vendor or other trusted organizations to regularly check for and apply 904
updates to all software components used within the OS. 905

Not as obvious, but equally critical to this approach, is ensuring that apps are built, tested, and 906
operated with clear segmentation between the app and the host OS. Containerized apps should 907
not rely on host-specific configurations or data storage because those dependencies often make it 908
more difficult to utilize minimal host OSes. Furthermore, from an operational standpoint, apps 909
should be built and operated to achieve resiliency through horizontal scaling across multiple 910
nodes. This is important for host OS remediation because it enables simple updates to all the 911
hosts in a deployment, removing one of the most common barriers to timely remediation of 912
security vulnerabilities. 913

4.2.2 Improper user access rights 914

Though most container deployments rely on orchestrators to distribute jobs across hosts, 915
organizations should still ensure that all authentication to the OS is audited, anomalies are 916
monitored, and any escalation to performed privileged operations is logged. This makes it 917
possible to identify anomalous access patterns such as an individual logging on to a host directly 918
and running privileged commands. 919

Additionally, organizations should ensure that the orchestrator provides only the specific set of 920
access required to the specific resources required for an administrator to perform their job. For 921
example, a developer working on project foo should only able to manage resources associated 922
with project foo and not be able to access resources for project bar. In cases where the 923
orchestrator does not provide this capability natively, third-party solutions should be 924
implemented to do so. 925

4.3 Container Runtime Countermeasures 926

4.3.1 Vulnerabilities within the runtime software 927

The container runtime must be carefully monitored for vulnerabilities and when problems are 928
detected, they must be remediated quickly. A vulnerable runtime exposes all containers it 929
supports, as well as the host itself, to potentially significant risk. Organizations should use tools 930
to look for Common Vulnerabilities and Exposures (CVEs) vulnerabilities in the runtimes 931
deployed, to upgrade any instances at risk, and to ensure that orchestrators only allow 932
deployments to properly maintained runtimes. 933

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

22

4.3.2 Unbounded network access from containers 934

Organizations should control the egress network traffic sent by containers. At minimum, these 935
controls should be in place at network borders, ensuring containers are not able to send traffic 936
across networks of differing sensitivity levels, such as from an environment hosting secure data 937
to the internet, similar to the patterns used for traditional architectures. However, the virtualized 938
networking model of inter-container traffic poses an additional challenge. 939

Because containers deployed across multiple hosts typically communicate over a virtual, 940
encrypted network, traditional network devices are often blind to this traffic. Additionally, 941
containers are typically assigned dynamic IP addresses automatically when deployed by 942
orchestrators, and these addresses change continuously as the app is scaled and load balanced. 943
Thus, ideally, organizations use a combination of existing network level devices and more 944
application-aware network filtering. App-aware tools should be able to not just see the inter-945
container traffic, but also to dynamically generate the rules used to filter this traffic based on the 946
specific characteristics of the apps running in the containers. This dynamic rule management is 947
critical due to the scale and rate of change of containerized apps, as well as their ephemeral 948
networking topology. 949

Specifically, app-aware tools should provide the following capabilities: 950

• Automated determination of proper container networking surfaces, including both 951
inbound ports and process-port bindings; 952

• Detection of traffic flows both between containers and other network entities, over both 953
‘on the wire’ traffic and encapsulated traffic; and 954

• Detection of network anomalies, such as unexpected east-west traffic flows, port 955
scanning, or outbound access to potentially dangerous destinations. 956

4.3.3 Insecure container runtime configurations 957

Organizations should automate compliance with container runtime configuration standards. 958
Documented technical implementation guidance, such as the Center for Internet Security Docker 959
Benchmark, provides details on options and recommended settings, but operationalizing this 960
guidance depends on automation. Organizations can use a variety of tools to ‘scan’ and assess 961
their compliance at a point in time, but such approaches do not scale. Instead, organizations 962
should use tools or processes that continuously assess configuration settings across the 963
environment and actively enforce them. 964

Additionally, mandatory access control technologies like SELinux [23] and AppArmor [24] 965
provide enhanced control and isolation for containers. For example, these technologies can be 966
used to provide additional segmentation and assurance that containers should only be able to 967
access specific file paths, processes, and network sockets, further constraining the ability of even 968
a compromised container to impact the host or other containers. 969

4.3.4 Shared kernel 970

While most container runtime environments do an effective job of isolating containers from each 971
other and from the host OS, in some cases it may be an unnecessary risk to run apps of different 972

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

23

classification levels together on the same runtime. Segmenting containers by purpose and 973
sensitivity provides additional defense in depth. For example, consider a scenario in which a host 974
is running containers for both a financial database and a public-facing blog. While normally the 975
container runtime will securely isolate these environments from each other, there is also a shared 976
responsibility amongst the DevOps teams for each app to operate them properly. If the DevOps 977
team for the blog were to run their app in a privileged mode and it was compromised, the 978
attacker may be able to escalate privileges to attack the database. 979

Thus, a best practice is to group containers together by relative sensitivity and to ensure that a 980
given host kernel only runs containers of a single sensitivity level. This segmentation may be 981
provided by using multiple physical servers, but modern hypervisors also provide strong enough 982
isolation to effectively mitigate these risks. From the previous example, this may mean that the 983
organization has two sensitivity levels for their containers. One is for financial apps and the 984
database is included in that group. The other is for web apps and the blog is included in that 985
group. The organization would then have two pools of VMs that would each host containers of a 986
single severity level. For example, the host called vm-financial may host the containers running 987
the financial database as well as the tax reporting software, while a host called vm-web may host 988
the blog and the public website. 989

By segmenting containers in this manner, it will be much more difficult for an attacker who 990
compromises one of the segments to expand that compromise to other segments. This approach 991
also ensures that any residual data, such as caches or local volumes mounted for temp files, stays 992
within its security zone. From the previous example, this zoning would ensure that any financial 993
data cached locally and residually after container termination would never be available on a host 994
running an app at a lower sensitivity level. 995

In larger-scale environments with hundreds of hosts and thousands of containers, this 996
segmentation must be automated to be practical to operationalize. Fortunately, common 997
orchestration platforms typically include some notion of being able to group apps together, and 998
container security tools can use attributes like container names and labels to enforce security 999
policies across them. In these environments, additional layers of defense in depth beyond simple 1000
host isolation may also leverage this segmentation. For example, an organization may implement 1001
separate hosting ‘zones’ or networks to not only isolate these containers within hypervisors but 1002
also to isolate their network traffic more discretely. 1003

4.3.5 Compromised containers 1004

Existing host-based intrusion detection processes and tools are often unable to detect and prevent 1005
attacks within containers due to the differing technical architecture and operational practices 1006
previously discussed. Organizations should implement additional tools that are container aware 1007
and designed to operate at the scale and change rate typically seen with containers. These tools 1008
should be able to automatically profile containerized apps and build protection profiles for them 1009
to minimize human interaction. These profiles should then be able to detect anomalies at 1010
runtime, including events such as: 1011

• Invalid or unexpected process execution, 1012
• Invalid or unexpected system calls, 1013

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

24

• Changes to protected configuration files and binaries, 1014
• Writes to unexpected locations and file types, 1015
• Creation of unexpected network listeners, 1016
• Traffic sent to unexpected network destinations, and 1017
• Malware storage or execution. 1018

4.4 Image Countermeasures 1019

4.4.1 Image vulnerabilities 1020

There is a need for container-specific vulnerability management tools and processes. Traditional 1021
vulnerability management tools make many assumptions about host durability, app update 1022
mechanisms, and update frequencies that are fundamentally misaligned with a containerized 1023
model. These tools are often unable to detect vulnerabilities within containerized stacks, leading 1024
to a false sense of safety. Organizations should use tools that take the pipeline-based build 1025
approach and immutable nature of containers and images into their design to provide more 1026
actionable and reliable results. Key aspects of effective tools and processes include: 1027

1. Integration with the entire lifecycle of images and containers, from the beginning of the 1028
build process, to whatever registries the organization is using, to runtime. 1029

2. Visibility into vulnerabilities at all layers of the image, not just the base layer of the 1030
image but also application frameworks and custom software the organization is using. 1031

3. Policy driven enforcement; organizations should be able to create ‘quality gates’ at each 1032
stage of the build and deployment process to ensure that only images that meet the 1033
vulnerable policy are allowed to progress. For example, organizations should be able to 1034
configure a rule in the build process to prevent the progression of images that include 1035
vulnerabilities with Common Vulnerability Scoring System (CVSS) ratings above a 1036
selected threshold. 1037

4.4.2 Image configuration 1038

In addition to software vulnerabilities, images may be configured in ways that increase security 1039
risks and violate organizational policies. For example, images should be configured to run as 1040
non-privileged users and should not allow remote access to themselves. Organizations should 1041
adopt tools and processes to validate and enforce compliance with these secure configuration 1042
best practices. Such tools and processes should include: 1043

1. Validation of image configuration settings including both vendor recommendations and 1044
custom / 3rd party best practices. 1045

2. Centralized reporting and monitoring of image compliance state to identify weaknesses 1046
and risks at the organizational level. 1047

3. Enforcement of compliance requirements by preventing the running of non-compliant 1048
images. 1049

4.4.3 Malware 1050

Organizations should use tools and practices to monitor images for malware both at rest and 1051
when running in containers. These processes should include: 1052

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

25

1. Identification of malware within images both in registries and on hosts, 1053
2. The usage of comprehensive malware signature sets and detection heuristics based on 1054

actual ‘in the wild’ attacks, 1055
3. The detection of malware introduced to a container at runtime; for example, if a container 1056

is subverted and the attacker downloads a rootkit into it. 1057

4.4.4 Embedded secrets 1058

Sensitive data should never be stored within image files. Instead, these secrets should be stored 1059
outside of the images and provided dynamically at runtime as needed. Most orchestration 1060
platforms, such as Docker Swarm and Kubernetes, include secret management natively. These 1061
platforms not only provide secure secret storage and ‘just in time’ injection to containers, but 1062
also make it much simpler to integrate secret management into the build and deployment 1063
processes. For example, an organization could use these tools to securely provision the database 1064
connection string into a web app container. The platform would ensure that only the web app 1065
container had access to this secret, that it is not persisted to disk, and that anytime the web app is 1066
deployed, the secret is provisioned into it. 1067

Organizations may also integrate their container deployments with existing enterprise secret 1068
management systems that are already in use for storing secrets in non-container environments. 1069
These tools typically provide APIs to retrieve secrets securely as containers are deployed, which 1070
eliminates the need to persist them within images. 1071

4.4.5 Image trust 1072

Organizations should enforce a set of trusted images and registries and ensure that only images 1073
from this set are allowed to run in their environment, thus mitigating the risk of untrusted or 1074
malicious components being deployed. 1075

To mitigate these risks, organizations should take a multilayered approach to ensure that only 1076
trusted, valid images are run within their environment. Such an approach should include: 1077

• Capability to centrally control exactly what images and registries are trusted in their 1078
environment; 1079

• Discrete identification of each image by cryptographic signature, using a NIST-validated 1080
implementation2; 1081

• Quality gates to ensure that only images that have been validated from a compliance and 1082
vulnerability state are allowed to be pushed to these locations; 1083

• Enforcement to ensure that all hosts in the environment only run images from these 1084
approved lists; and 1085

• Ongoing monitoring and maintenance of these repositories to ensure images within them 1086
are maintained and updated as vulnerabilities and configuration requirements change. 1087

2 For more information on NIST-validated cryptographic implementations, see the Cryptographic Module Validation Program
(CMVP) page at http://csrc.nist.gov/groups/STM/cmvp/.

http://csrc.nist.gov/groups/STM/cmvp/

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

26

4.5 Registry Countermeasures 1088

4.5.1 Insecure connections to registries 1089

Organizations should configure their container runtimes to only connect to registries over 1090
encrypted channels. The specific steps vary between runtime and orchestrator, but the key goal is 1091
to ensure that all data pulled from a registry is encrypted in transit between the registry and the 1092
destination. 1093

4.5.2 Stale images in registries 1094

The risk of using stale images can be mitigated through two primary methods. First, 1095
organizations can prune registries of unsafe, vulnerable images that should no longer be used. 1096
This process can be automated based on time triggers and labels associated with images. 1097
Second, operational practices should emphasize accessing images using immutable names that 1098
specify discrete versions of images to be used. For example, rather than configuring a 1099
deployment job to use the image called my-app, configure it to deploy specific versions of the 1100
image, such as my-app:2.3 and my-app:2.4 to ensure that specific, known good instances of 1101
images are deployed as part of each job. 1102

4.6 Orchestrator Countermeasures 1103

4.6.1 Unbounded administrative access 1104

Especially because of their wide-ranging span of control, orchestrators should use a least 1105
privileged access model in which users are only granted ability to perform the specific actions on 1106
the specific hosts, containers, and images their job role requires. For examples, members of the 1107
test team should only be given access to the images used in testing and the hosts used for running 1108
them, and should only be able to manipulate the containers they created. Test team members 1109
should have limited or no access to containers used in production. 1110

4.6.2 Weak or unmanaged credentials 1111

Access to cluster-wide administrative accounts should be tightly controlled as these accounts 1112
provide ability to affect all resources in the environment. Organizations should also implement 1113
single sign on to existing directory systems where applicable. Single sign on simplifies the 1114
orchestrator authentication experience, makes it easier for users to use strong authentication 1115
credentials, and centralizes auditing of access, making anomaly detection more effective. 1116

4.6.3 Mixing of workload sensitivity levels 1117

Orchestrators should be configured to isolate deployments to specific sets of hosts by sensitivity 1118
levels. The particular approach for implementing this varies depending on the orchestrator in use, 1119
but the general model is to define rules that prevent high sensitivity workloads from being placed 1120
on the same host as those running lower sensitivity workloads. This can be accomplished 1121
through the use of host ‘pinning’ within the orchestrator or even simply by having separate, 1122
individually managed clusters for each classification level. 1123

 1124

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

27

5 Container Threat Scenario Examples 1125

To illustrate the effectiveness of the recommended mitigations from Section 4, consider the 1126
following threat scenario examples for containers. 1127

5.1 Exploit of a Vulnerability within an Image 1128

One of the most common threats to a containerized environment is application-level 1129
vulnerabilities in the software within containers. For example, an organization may build an 1130
image based on a common web application. If that application has a vulnerability, it may be used 1131
to subvert the application within the container. Once compromised, the attacker may be able to 1132
map other systems in the environment, attempt to elevate privileges within the compromised 1133
container, or abuse the container for use in attacks on other systems (such as acting as a file 1134
dropper or command and control endpoint). 1135

Organizations that adopt the recommendations would have multiple layers of defense in depth 1136
against such threats: 1137

1. Detecting the vulnerable image early in the deployment process and having controls in 1138
place to prevent vulnerable images from being deployed would prevent the vulnerability 1139
from being introduced into production. 1140

2. Container-aware network monitoring and filtering would detect anomalous connections 1141
to other containers during the attempt to map other systems. 1142

3. Container-aware process monitoring and malware detection would detect the running of 1143
invalid or unexpected malicious processes and the data they introduce into the 1144
environment. 1145

5.2 Exploit of the Container Runtime 1146

While a rare occurrence, if a container runtime were compromised, an attacker could utilize this 1147
access to attack all the containers on the host and even the host itself. 1148

Relevant mitigations for this threat scenario include: 1149

1. The usage of mandatory access control capabilities can provide additional barriers to 1150
ensure that process and file system activity is still segmented within the defined 1151
boundaries. 1152

2. Segmentation of workloads ensures that the scope of the compromise would be limited to 1153
applications of a common classification level that are sharing the host. For example, a 1154
compromised runtime on a host only running web applications would not impact 1155
runtimes on other hosts running containers for financial applications. 1156

3. Security tools that can report on the vulnerability state of runtimes and prevent the 1157
deployment of images to vulnerable ones can prevent workloads from running there. 1158

5.3 Running a Poisoned Image 1159

Because images are easily sourced from public locations, often with unknown provenance, an 1160
attacker may embed malicious software within images known to be used by a target. For 1161

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

28

example, if an attacker determines that a target is active on a discussion board about a particular 1162
project and uses images provided by that project’s web site, the attacker may seek to craft 1163
malicious versions of these images for use in an attack. 1164

Relevant mitigations include: 1165

1. Ensuring that only trusted images are allowed to run will prevent images from external, 1166
unvetted sources from being used. 1167

2. Automated scanning of images for vulnerabilities and malware may detect malicious 1168
code such as rootkits embedded within an image. 1169

 1170

 1171

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

29

6 Secure Container Technology Stack Planning and Implementation 1172

It is critically important to carefully plan before installing, configuring, and deploying container 1173
technology stacks. This helps ensure that the container environment is as secure as possible and 1174
is in compliance with all relevant organizational policies, external regulations, and other 1175
requirements. 1176

There is a great deal of similarity in the planning and implementation recommendations for 1177
container technology stacks and virtualization solutions. Section 5 of NIST SP 800-125 [1] 1178
already contains a full set of recommendations for virtualization solutions. Instead of repeating 1179
all those recommendations here, this section points readers to that document and states that, 1180
besides the exceptions listed below, organizations should apply all the NIST SP 800-125 Section 1181
5 recommendations in a container technology stack context. For example, instead of creating a 1182
virtualization security policy, create a container technology stack security policy. 1183

This section of the document lists exceptions and additions to the NIST SP 800-125 Section 5 1184
recommendations, grouped by the corresponding phase in the planning and implementation life 1185
cycle. 1186

6.1 Initiation Phase 1187

Organizations should consider how other security policies may be affected by containers and 1188
adjust these policies as needed to take containers into consideration. For example, policies for 1189
incident response (especially forensics) and vulnerability management may need to be adjusted 1190
to take into account the special requirements of containers. 1191

The introduction of containerization technologies might disrupt the existing culture and software 1192
development methodologies within the organization. To take full advantage of the benefits 1193
containers can provide, the organization’s processes should be tailored to support this new way 1194
of developing, running, and supporting applications. Traditional development practices, patching 1195
techniques, and system upgrade processes might not directly apply to a containerized 1196
environment, and it is important that the employees within the organization are willing to adapt 1197
to a new model. New processes can consider and address any potential culture shock that is 1198
introduced by the technology shift. Education and training can be offered to anyone involved in 1199
the software development lifecycle to allow people to become comfortable and excited for the 1200
new way to build, ship, and run applications. 1201

6.2 Planning and Design Phase 1202

The primary container-specific consideration for the planning and design phase is forensics. 1203
Because containers mostly build on components already present in OSes, the tools and 1204
techniques for performing forensics in a containerized environment are mostly an evolution of 1205
existing practices. The immutable nature of containers and images can actually improve forensic 1206
capabilities because the demarcation between what an image should do and what actually 1207
occurred during an incident is clearer. For example, if a container launched to run a web server 1208
suddenly starts a mail relay, it is very clear that the new process was not part of the original 1209

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

30

image used to create the container. On traditional platforms, with less separation between the OS 1210
and apps, making this differentiation can be much more difficult. 1211

Organizations that are familiar with process, memory, and disk incident response activities will 1212
find them largely similar when working with containers. However, there are some differences to 1213
keep in mind as well. 1214

Containers typically use a layered file system that is virtualized from the host OS. Directly 1215
examining paths on the hosts typically only reveals the outer boundary of these layers, not the 1216
files and data within them. Thus, when responding to incidents in containerized environments, 1217
users should identify the specific storage provider in use and understand how to properly 1218
examine its contents offline. 1219

Containers are typically connected to each other using virtualized overlay networks. These 1220
overlay networks frequently use encapsulation and encryption to allow the traffic to be routed 1221
over existing networks securely. However, this means that when investigating incidents on 1222
container networks, particularly when doing any live packet analysis, the tools used must be 1223
aware of these virtualized networks and understand how to extract the embedded IP frames from 1224
within them for parsing with existing tools. 1225

Process and memory activity within containers is largely similar to that which would be observed 1226
within traditional apps, but with different parent processes. For example, container runtimes may 1227
spawn all processes within containers in a nested fashion in which the runtime is the top-level 1228
process with first-level descendants per container and second-level descendants for each process 1229
within the container. For example: 1230

├─containerd─┬───┬───[container1─┬─bash] 1231
│ │ │ └─8*[{thread}]] 1232
│ │ ├─container2────┬─start.sh─┬─mongod───22*[{mongod}] 1233
│ │ │ │ └─node─┬─4*[{V8 WorkerThread}] 1234
│ │ │ │ └─5*[{node}] 1235
│ │ │ └─8*[{thread}] 1236
│ │ ├─container3────┬─mysqld───28*[{mysqld}] 1237
│ │ │ └─8*[{thread}] 1238

6.3 Implementation Phase 1239

After the container technology stack has been designed, the next step is to implement and test a 1240
prototype of the design before putting the solution into production. Be aware that container 1241
technology stacks do not offer the types of introspection capabilities that VM technologies do. 1242

In addition to the NIST SP 800-125 items, it is important to also evaluate the container 1243
technology stack’s isolation capabilities. Ensure that processes within the container can access 1244
all resources they are permitted to and cannot view or access any other resources. 1245

Implementation may also require altering the configuration of other security controls and 1246
technologies, such as security event logging, network management, code repositories, and 1247
authentication servers. 1248

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

31

When the prototype evaluation has been completed and the container technology stack is ready 1249
for production usage, the stack should initially be used for a small number of applications. 1250
Problems that occur are likely to affect multiple applications, so it is helpful to identify these 1251
problems early on so they can be addressed before further deployment. A phased deployment 1252
also provides time for developers and IT staff (e.g., system administrators, help desk) to be 1253
trained on its usage and support. 1254

6.4 Operations and Maintenance Phase 1255

Operational processes that are particularly important for maintaining the security of container 1256
technology stacks, and thus should be performed regularly, include updating all images and 1257
distributing those updated images to containers to take the place of older images. 1258

6.5 Disposition Phase 1259

The ability for containers to be deployed and destroyed automatically based on the needs of an 1260
application allows for highly efficient systems but can also introduce some challenges for 1261
records retention, forensic, and event data requirements. Organizations should make sure that 1262
appropriate mechanisms are in place to satisfy their data retention policies. Example of issues 1263
that should be addressed are how containers and images should be destroyed, what data should 1264
be extracted from a container before disposal and how that data extraction should be performed, 1265
how cryptographic keys used by a container should be revoked or deleted, etc. 1266

Data stores and media that support the containerized environment should be included in any 1267
disposal plans developed by the organization. 1268

 1269

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

32

7 Conclusion 1270

While containers represent a transformational change in the way apps are built and run, they do 1271
not fundamentally upend decades of information security best practices. On the contrary, the 1272
most important aspects of container security are simply refinements of well-established 1273
techniques and principles. Containers provide new constructs for hosting apps, but they run on 1274
the same basic stack as the VMs most organizations are already using. Securing containers is as 1275
much a function of securing the underlying stack as it is using any container-specific techniques. 1276

Earlier, this document discussed some of the differences between securing containers and 1277
securing the same apps in VMs. It is useful to summarize the guidance in this document around 1278
those points. 1279

There are many more entities, so your security processes and tools must be able to scale 1280
accordingly. Scale does not just mean the total number of objects supported in a database, but 1281
also how effectively and autonomously policy can be managed. Many organizations struggle 1282
with the burden of managing security across hundreds of VMs. As container-centric architectures 1283
become the norm and these organizations are responsible for thousands or tens of thousands of 1284
instances, their security practices should emphasize automation and efficiency to keep up. 1285

With containers there is a much higher rate of change, moving from updating an app a few times 1286
a year to a few times a week or even a day. What used to be acceptable to do manually no longer 1287
is. Automation is not just important to deal with the net number of entities, but also how 1288
frequently those entities change. Being able to centrally express policy and have software 1289
manage enforcement of it across the environment is vital. Organizations that adopt containers 1290
should be prepared to manage this frequency of change, which may require fundamentally new 1291
operational practices and organizational evolution. 1292

Security is largely in the hands of the developer, so organizations should ensure that those 1293
developers have all the security data they need to make good decisions. That data should be 1294
integrated with the tooling they already use and should allow security teams to not just notify but 1295
also actively enforce quality throughout the development cycle. Organizations that are successful 1296
at this transition gain security benefit in being able to respond to vulnerabilities faster and with 1297
less operational burden than ever before. 1298

Security must be as portable as the containers themselves, so organizations should adopt 1299
techniques and tools that are open and work across platforms and environments. Many 1300
organizations will see developers build in one environment, test in another, and deploy in a third, 1301
so having consistency in assessment and enforcement across these is key. Portability is also not 1302
just environmental but also temporal. Continuous integration and deployment practices erode the 1303
traditional walls between phases of the development and deployment cycle, so organizations 1304
need to ensure consistent, automated security practices across creation of the image, storage of 1305
the image in registries, and running of the images in containers. 1306

Organizations that navigate these changes do not just reach a basic stasis of their existing 1307
security policies with containers, but instead can begin to leverage containers to actually improve 1308
their overall security. The immutability and declarative nature of containers enables 1309

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

33

organizations to begin realizing the vision of more automated, app-centric security that requires 1310
minimal manual involvement and that updates itself as the apps change. Containers are an 1311
enabling capability in organizations moving from reactive, manual, high-cost security models to 1312
those that enable better scale and efficiency, thus lowering risk. 1313

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

34

Appendix A—NIST Resources for Security Outside the Container Stack 1314

This appendix lists NIST resources for securing systems and system components outside the 1315
container stack. Many more resources are available from other organizations. 1316

Table 1: NIST Resources for Security Outside the Container Stack 1317

Resource Name and URI Applicability
SP 800-40 Revision 3, Guide to Enterprise Patch Management Technologies
https://doi.org/10.6028/NIST.SP.800-40r3

All IT products and systems

SP 800-46 Revision 2, Guide to Enterprise Telework, Remote Access, and Bring
Your Own Device (BYOD) Security
https://doi.org/10.6028/NIST.SP.800-46r2

Client operating systems,
client applications

SP 800-53 Revision 4, Security and Privacy Controls for Federal Information
Systems and Organizations
https://doi.org/10.6028/NIST.SP.800-53r4

All IT products and systems

SP 800-70 Revision 3, National Checklist Program for IT Products: Guidelines for
Checklist Users and Developers
http://dx.doi.org/10.6028/NIST.SP.800-70r3

Server operating systems,
client operating systems,
server applications, client
applications

SP 800-83 Revision 1, Guide to Malware Incident Prevention and Handling for
Desktops and Laptops
https://doi.org/10.6028/NIST.SP.800-83r1

Client operating systems,
client applications

SP 800-123, Guide to General Server Security
https://doi.org/10.6028/NIST.SP.800-123

Servers

SP 800-124 Revision 1, Guidelines for Managing the Security of Mobile Devices in
the Enterprise
https://doi.org/10.6028/NIST.SP.800-124r1

Mobile devices

SP 800-125, Guide to Security for Full Virtualization Technologies
https://doi.org/10.6028/NIST.SP.800-125

Hypervisors and virtual
machines

SP 800-125A, Security Recommendations for Hypervisor Deployment
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf

Hypervisors and virtual
machines

SP 800-125B, Secure Virtual Network Configuration for Virtual Machine (VM)
Protection
https://doi.org/10.6028/NIST.SP.800-125B

Hypervisors and virtual
machines

SP 800-147, BIOS Protection Guidelines
https://doi.org/10.6028/NIST.SP.800-147

Client hardware

SP 800-155, BIOS Integrity Measurement Guidelines
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf

Client hardware

SP 800-164, Guidelines on Hardware-Rooted Security in Mobile Devices
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf

Mobile devices

 1318

 1319

 1320

https://doi.org/10.6028/NIST.SP.800-40r3
https://doi.org/10.6028/NIST.SP.800-46r2
https://doi.org/10.6028/NIST.SP.800-53r4
http://dx.doi.org/10.6028/NIST.SP.800-70r3
https://doi.org/10.6028/NIST.SP.800-83r1
https://doi.org/10.6028/NIST.SP.800-123
https://doi.org/10.6028/NIST.SP.800-124r1
https://doi.org/10.6028/NIST.SP.800-125
http://csrc.nist.gov/publications/drafts/800-125a/sp800-125a_draft.pdf
https://doi.org/10.6028/NIST.SP.800-125B
https://doi.org/10.6028/NIST.SP.800-147
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

35

Appendix B—NIST Cybersecurity Framework and NIST SP 800-53 Security Controls 1321
Related to Container Stack Security 1322

The security controls from NIST SP 800-53 Revision 4 [25] that are most important for container 1323
stack security are listed in Table 2. 1324

Table 2: Security Controls from NIST SP 800-53 for Container Stack Security 1325

NIST SP 800-53 Control Related Controls References
AC-2, Account
Management

AC-3, AC-4, AC-5, AC-6, AC-10, AC-17, AC-19, AC-20,
AU-9, IA-2, IA-4, IA-5, IA-8, CM-5, CM-6, CM-11, MA-3,
MA-4, MA-5, PL-4, SC-13

AC-3, Access Enforcement AC-2, AC-4, AC-5, AC-6, AC-16, AC-17, AC-18, AC-19,
AC-20, AC-21, AC- 22, AU-9, CM-5, CM-6, CM-11, MA-3,
MA-4, MA-5, PE-3

AC-4, Information Flow
Enforcement

AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2,
SC-5, SC-7, SC-18

AC-6, Least Privilege AC-2, AC-3, AC-5, CM-6, CM-7, PL-2
AC-17, Remote Access AC-2, AC-3, AC-18, AC-19, AC-20, CA-3, CA-7, CM-8,

IA-2, IA-3, IA-8, MA-4, PE-17, PL-4, SC-10, SI-4
NIST SPs 800-46, 800-77,
800-113, 800-114, 800-
121

AT-3, Role-Based Security
Training

AT-2, AT-4, PL-4, PS-7, SA-3, SA-12, SA-16 C.F.R. Part 5 Subpart C
(5C.F.R.930.301); NIST
SPs 800-16, 800- 50

AU-2, Audit Events AC-6, AC-17, AU-3, AU-12, MA-4, MP-2, MP-4, SI-4 NIST SP 800-92;
https://idmanagement.gov/

AU-5, Response to Audit
Processing Failures

AU-4, SI-12

AU-6, Audit Review,
Analysis, and Reporting

AC-2, AC-3, AC-6, AC-17, AT-3, AU-7, AU-16, CA-7, CM-
5, CM-10, CM-11, IA-3, IA-5, IR-5, IR-6, MA-4, MP-4, PE-
3, PE-6, PE-14, PE-16, RA-5, SC-7, SC-18, SC-19, SI-3,
SI-4, SI-7

AU-8, Time Stamps AU-3, AU-12
AU-9, Protection of Audit
Information

AC-3, AC-6, MP-2, MP-4, PE-2, PE-3, PE-6

AU-12, Audit Generation AC-3, AU-2, AU-3, AU-6, AU-7
CA-9, Internal System
Connections

AC-3, AC-4, AC-18, AC-19, AU-2, AU-12, CA- 7, CM-2,
IA-3, SC-7, SI-4

CM-2, Baseline
Configuration

CM-3, CM-6, CM-8, CM-9, SA-10, PM-5, PM-7 NIST SP 800-128

CM-3, Configuration
Change Control

CA-7, CM-2, CM-4, CM-5, CM-6, CM-9, SA-10, SI- 2, SI-
12

NIST SP 800-128

CM-4, Security Impact
Analysis

CA-2, CA-7, CM-3, CM-9, SA-4, SA-5, SA-10, SI-2 NIST SP 800-128

CM-5, Access Restrictions
for Change

AC-3, AC-6, PE-3

CM-6, Configuration
Settings

AC-19, CM-2, CM-3, CM-7, SI-4 OMB Memoranda 07-11,
07-18, 08-22; NIST SPs
800-70, 800-128;
https://nvd.nist.gov;
https://checklists.nist.gov;
https://www.nsa.gov

https://idmanagement.gov/
https://nvd.nist.gov/
https://checklists.nist.gov/
https://www.nsa.gov/

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

36

NIST SP 800-53 Control Related Controls References
CM-7, Least Functionality AC-6, CM-2, RA-5, SA-5, SC-7 DoD Instruction 8551.01
CM-9, Configuration
Management Plan

CM-2, CM-3, CM-4, CM-5, CM-8, SA-10 NIST SP 800-128

CP-2, Contingency Plan AC-14, CP-6, CP-7, CP-8, CP-9, CP-10, IR-4, IR-8, MP-
2, MP-4, MP-5, PM-8, PM-11

Federal Continuity
Directive 1; NIST SP 800-
34

CP-9, Information System
Backup

CP-2, CP- 6, MP-4, MP-5, SC-13 NIST SP 800-34

CP-10, Information System
Recovery and
Reconstitution

CA-2, CA-6, CA-7, CP-2, CP-6, CP-7, CP-9, SC-24 Federal Continuity
Directive 1; NIST SP 800-
34

IA-2, Identification and
Authentication
(Organizational Users)

AC-2, AC-3, AC-14, AC-17, AC-18, IA-4, IA-5, IA-8 HSPD-12; OMB
Memoranda 04-04, 06-16,
11-11; FIPS 201; NIST
SPs 800-63, 800-73, 800-
76, 800-78; FICAM
Roadmap and
Implementation Guidance;
https://idmanagement.gov/

IA-4, Identifier
Management

AC-2, IA-2, IA-3, IA-5, IA-8, SC-37 FIPS 201; NIST SPs 800-
73, 800-76, 800-78

IA-5, Authenticator
Management

AC-2, AC-3, AC-6, CM-6, IA-2, IA-4, IA-8, PL-4, PS-5,
PS-6, SC-12, SC-13, SC-17, SC-28

OMB Memoranda 04-04,
11-11; FIPS 201; NIST
SPs 800-63, 800-73, 800-
76, 800-78; FICAM
Roadmap and
Implementation Guidance;
https://idmanagement.gov/

IR-1, Incident Response
Policy and Procedures

PM-9 NIST SPs 800-12, 800-61,
800-83, 800-100

IR-4, Incident Handling AU-6, CM-6, CP-2, CP-4, IR-2, IR-3, IR-8, PE-6, SC-5,
SC-7, SI-3, SI-4, SI-7

EO 13587; NIST SP 800-
61

MA-2, Controlled
Maintenance

CM-3, CM-4, MA-4, MP-6, PE-16, SA-12, SI-2

MA-4, Nonlocal
Maintenance

AC- 2, AC-3, AC-6, AC-17, AU-2, AU-3, IA-2, IA-4, IA-5,
IA-8, MA-2, MA-5, MP-6, PL-2, SC-7, SC-10, SC-17

FIPS 140-2, 197, 201;
NIST SPs 800-63, 800-88;
CNSS Policy 15

PL-2, System Security
Plan

AC-2, AC-6, AC-14, AC-17, AC-20, CA-2, CA-3, CA-7,
CM-9, CP-2, IR-8, MA-4, MA-5, MP-2, MP-4, MP-5, PL-7,
PM-1, PM-7, PM-8, PM-9, PM-11, SA-5, SA-17

NIST SP 800-18

PL-4, Rules of Behavior AC-2, AC-6, AC-8, AC-9, AC-17, AC-18, AC-19, AC-20,
AT-2, AT-3, CM-11, IA-2, IA-4, IA-5, MP-7, PS-6, PS-8,
SA-5

NIST SP 800-18

RA-2, Security
Categorization

CM-8, MP-4, RA-3, SC-7 FIPS 199; NIST SPs 800-
30, 800-39, 800-60

RA-3, Risk Assessment RA-2, PM-9 OMB Memorandum 04-
04; NIST SPs 800-30,
800-39;
https://idmanagement.gov/

SA-10, Developer
Configuration
Management

CM-3, CM-4, CM-9, SA-12, SI-2 NIST SP 800-128

https://idmanagement.gov/
https://idmanagement.gov/
https://idmanagement.gov/

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

37

NIST SP 800-53 Control Related Controls References
SA-11, Developer Security
Testing and Evaluation

CA-2, CM-4, SA-3, SA-4, SA-5, SI-2 ISO/IEC 15408; NIST SP
800-53A;
https://nvd.nist.gov;
http://cwe.mitre.org;
http://cve.mitre.org;
http://capec.mitre.org

SA-15, Development
Process, Standards, and
Tools

SA-3, SA-8

SA-19, Component
Authenticity

PE-3, SA-12, SI-7

SC-2, Application
Partitioning

SA-4, SA-8, SC-3

SC-4, Information in
Shared Resources

AC-3, AC-4, MP-6

SC-6, Resource
Availability

SC-8, Transmission
Confidentiality and
Integrity

AC-17, PE-4 FIPS 140-2, 197; NIST
SPs 800-52, 800-77, 800-
81, 800-113; CNSS Policy
15; NSTISSI No. 7003

SI-2, Flaw Remediation CA-2, CA-7, CM-3, CM-5, CM-8, MA-2, IR-4, RA-5, SA-
10, SA-11, SI-11

NIST SPs 800-40, 800-
128

SI-4, Information System
Monitoring

AC-3, AC-4, AC-8, AC-17, AU-2, AU-6, AU-7, AU-9, AU-
12, CA-7, IR-4, PE-3, RA-5, SC-7, SC-26, SC-35, SI-3,
SI-7

NIST SPs 800-61, 800-83,
800-92, 800-137

SI-7, Software, Firmware,
and Information Integrity

SA-12, SC-8, SC-13, SI-3 NIST SPs 800-147, 800-
155

 1326

The list below details the NIST Cybersecurity Framework [26] subcategories that are most 1327
important for container stack security. 1328

• Identify: Asset Management 1329
o ID.AM-3: Organizational communication and data flows are mapped 1330
o ID.AM-5: Resources (e.g., hardware, devices, data, and software) are prioritized 1331

based on their classification, criticality, and business value 1332
• Identify: Risk Assessment 1333

o ID.RA-1: Asset vulnerabilities are identified and documented 1334
o ID.RA-3: Threats, both internal and external, are identified and documented 1335
o ID.RA-4: Potential business impacts and likelihoods are identified 1336
o ID.RA-5: Threats, vulnerabilities, likelihoods, and impacts are used to determine risk 1337
o ID.RA-6: Risk responses are identified and prioritized 1338

• Protect: Access Control 1339
o PR.AC-1: Identities and credentials are managed for authorized devices and users 1340
o PR.AC-2: Physical access to assets is managed and protected 1341
o PR.AC-3: Remote access is managed 1342

https://nvd.nist.gov/
http://cwe.mitre.org/
http://cve.mitre.org/
http://capec.mitre.org/

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

38

o PR.AC-4: Access permissions are managed, incorporating the principles of least 1343
privilege and separation of duties 1344

• Protect: Awareness and Training 1345
o PR.AT-2: Privileged users understand roles & responsibilities 1346
o PR.AT-5: Physical and information security personnel understand roles & 1347

responsibilities 1348
• Protect: Data Security 1349

o PR.DS-2: Data-in-transit is protected 1350
o PR.DS-4: Adequate capacity to ensure availability is maintained 1351
o PR.DS-5: Protections against data leaks are implemented 1352
o PR.DS-6: Integrity checking mechanisms are used to verify software, firmware, and 1353

information integrity 1354
• Protect: Information Protection Processes and Procedures 1355

o PR.IP-1: A baseline configuration of information technology/industrial control 1356
systems is created and maintained 1357

o PR.IP-3: Configuration change control processes are in place 1358
o PR.IP-6: Data is destroyed according to policy 1359
o PR.IP-9: Response plans (Incident Response and Business Continuity) and recovery 1360

plans (Incident Recovery and Disaster Recovery) are in place and managed 1361
o PR.IP-12: A vulnerability management plan is developed and implemented 1362

• Protect: Maintenance 1363
o PR.MA-1: Maintenance and repair of organizational assets is performed and logged 1364

in a timely manner, with approved and controlled tools 1365
o PR.MA-2: Remote maintenance of organizational assets is approved, logged, and 1366

performed in a manner that prevents unauthorized access 1367
• Protect: Protective Technology 1368

o PR.PT-1: Audit/log records are determined, documented, implemented, and reviewed 1369
in accordance with policy 1370

o PR.PT-3: Access to systems and assets is controlled, incorporating the principle of 1371
least functionality 1372

• Detect: Anomalies and Events 1373
o DE.AE-2: Detected events are analyzed to understand attack targets and methods 1374

• Detect: Security Continuous Monitoring 1375
o DE.CM-1: The network is monitored to detect potential cybersecurity events 1376
o DE.CM-7: Monitoring for unauthorized personnel, connections, devices, and software 1377

is performed 1378
• Respond: Response Planning 1379

o RS.RP-1: Response plan is executed during or after an event 1380
• Respond: Analysis 1381

o RS.AN-1: Notifications from detection systems are investigated 1382
o RS.AN-3: Forensics are performed 1383

• Respond: Mitigation 1384
o RS.MI-1: Incidents are contained 1385
o RS.MI-2: Incidents are mitigated 1386
o RS.MI-3: Newly identified vulnerabilities are mitigated or documented as accepted 1387

risks 1388

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

39

• Recover: Recovery Planning 1389
o RC.RP-1: Recovery plan is executed during or after an event 1390

 1391

Table 3 lists the security controls from NIST SP 800-53 Revision 4 [25] that can be 1392
accomplished partially or completely by using container stack technology. The rightmost column 1393
lists the sections of this document that map to each NIST SP 800-53 control. 1394

Table 3: NIST SP 800-53 Controls Supported by Container Stacks 1395

NIST SP 800-53
Control

Container Stack Relevancy Related Sections of
This Document

CM-3, Configuration
Change Control

Images can be used to help manage change control for
applications.

2.3, 2.4, 2.5, 3.1, 4.4

SC-2, Application
Partitioning

Separating user functionality from administrator functionality can
be accomplished in part by using containers or other virtualization
technologies so that the functionality is performed in different
containers.

2 (introduction), 2.1,
4.3.4

SC-3, Security
Function Isolation

Separating security functions from non-security functions can be
accomplished in part by using containers or other virtualization
technologies so that the functions are performed in different
containers.

2 (introduction), 2.1,
4.3.4

SC-4, Information in
Shared Resources

Container stacks are designed to restrict each container’s access
to shared resources so that information cannot inadvertently be
leaked from one container to another.

2 (introduction), 2.1,
2.2, 4.3

SC-6, Resource
Availability

The maximum resources available for each container can be
specified, thus protecting the availability of resources by not
allowing any container to consume excessive resources.

2.1, 2.2

SC-7, Boundary
Protection

Boundaries can be established and enforced between containers
to restrict their communications with each other.

2 (introduction), 2.1,
2.2, 4.3

SC-39, Process
Isolation

Multiple containers can run processes simultaneously on the
same host, but those processes are isolated from each other.

2 (introduction), 2.1,
2.2, 2.3, 4.3

SI-7, Software,
Firmware, and
Information Integrity

Unauthorized changes to the contents of images can easily be
detected and the altered image replaced with a known good copy.

2.1, 4.4, 4.5

SI-14, Non-
Persistence

Images running within containers are replaced as needed with
new image versions, so data, files, executables, and other
information stored within running images is not persistent.

2.3, 4.4

 1396

Similar to Table 3, Table 4 lists the NIST Cybersecurity Framework [26] subcategories that can 1397
be accomplished partially or completely by using container stack technology. The rightmost 1398
column lists the sections of this document that map to each Cybersecurity Framework 1399
subcategory. 1400

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

40

Table 4: NIST Cybersecurity Framework Subcategories Supported by Container Stacks 1401

Cybersecurity Framework
Subcategory

Container Stack Relevancy Related Sections
of This Document

PR.DS-4: Adequate capacity to ensure
availability is maintained

The maximum resources available for each
container can be specified, thus protecting the
availability of resources by not allowing any
container to consume excessive resources.

2.1, 2.2

PR.DS-5: Protections against data
leaks are implemented

Container stacks are designed to restrict each
container’s access to shared resources so that
information cannot inadvertently be leaked from
one container to another.

2 (introduction), 2.1,
2.2, 4.3

PR.DS-6: Integrity checking
mechanisms are used to verify
software, firmware, and information
integrity

Unauthorized changes to the contents of images
can easily be detected and the altered image
replaced with a known good copy.

2.1, 4.4, 4.5

PR.DS-7: The development and testing
environment(s) are separate from the
production environment

Using containers makes it easier to have
separate development, testing, and production
environments because the same image can be
used in all environments without adjustments.

2.1, 2.3

PR.IP-3: Configuration change control
processes are in place

Images can be used to help manage change
control for applications.

2.3, 2.4, 2.5, 3.1, 4.4

 1402

Information on these controls and guidelines on possible implementations can be found in the 1403
following NIST publications: 1404

• FIPS 140-2, Security Requirements for Cryptographic Modules 1405
• FIPS 197, Advanced Encryption Standard (AES) 1406
• FIPS 199, Standards for Security Categorization of Federal Information and Information 1407

Systems 1408
• FIPS 201-2, Personal Identity Verification (PIV) of Federal Employees and Contractors 1409
• Draft SP 800-12 Rev. 1, An Introduction to Information Security 1410
• Draft SP 800-16 Rev. 1, A Role-Based Model for Federal Information 1411

Technology/Cybersecurity Training 1412
• SP 800-18 Rev. 1, Guide for Developing Security Plans for Federal Information Systems 1413
• SP 800-30 Rev. 1, Guide for Conducting Risk Assessments 1414
• SP 800-34 Rev. 1, Contingency Planning Guide for Federal Information Systems 1415
• SP 800-39, Managing Information Security Risk: Organization, Mission, and Information 1416

System View 1417
• SP 800-40 Rev. 3, Guide to Enterprise Patch Management Technologies 1418
• SP 800-46 Rev. 2, Guide to Enterprise Telework, Remote Access, and Bring Your Own 1419

Device (BYOD) Security 1420
• SP 800-50, Building an Information Technology Security Awareness and Training 1421

Program 1422

https://dx.doi.org/10.6028/NIST.FIPS.140-2
https://dx.doi.org/10.6028/NIST.FIPS.197
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.199
https://dx.doi.org/10.6028/NIST.FIPS.201-2
https://csrc.nist.gov/publications/drafts/800-12r1/sp800_12_r1_draft.pdf
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://csrc.nist.gov/publications/drafts/800-16-rev1/sp800_16_rev1_3rd-draft.pdf
https://dx.doi.org/10.6028/NIST.SP.800-18r1
https://dx.doi.org/10.6028/NIST.SP.800-30r1
https://dx.doi.org/10.6028/NIST.SP.800-34r1
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-39
https://dx.doi.org/10.6028/NIST.SP.800-40r3
https://dx.doi.org/10.6028/NIST.SP.800-50
https://dx.doi.org/10.6028/NIST.SP.800-50

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

41

• SP 800-52 Rev. 1, Guidelines for the Selection, Configuration, and Use of Transport 1423
Layer Security (TLS) Implementations 1424

• SP 800-53 Rev. 4, Security and Privacy Controls for Federal Information Systems and 1425
Organizations 1426

• SP 800-53A Rev. 4, Assessing Security and Privacy Controls in Federal Information 1427
Systems and Organizations: Building Effective Assessment Plans 1428

• SP 800-60 Rev. 1 Vol. 1, Guide for Mapping Types of Information and Information 1429
Systems to Security Categories 1430

• SP 800-61 Rev. 2, Computer Security Incident Handling Guide 1431
• Draft SP 800-63 Rev. 3, Digital Identity Guidelines 1432
• SP 800-70 Rev. 3, National Checklist Program for IT Products: Guidelines for Checklist 1433

Users and Developers 1434
• SP 800-73-4, Interfaces for Personal Identity Verification 1435
• SP 800-76-2, Biometric Specifications for Personal Identity Verification 1436
• SP 800-77, Guide to IPsec VPNs 1437
• SP 800-78-4, Cryptographic Algorithms and Key Sizes for Personal Identification 1438

Verification (PIV) 1439
• SP 800-81-2, Secure Domain Name System (DNS) Deployment Guide 1440
• SP 800-83 Rev. 1, Guide to Malware Incident Prevention and Handling for Desktops and 1441

Laptops 1442
• SP 800-88 Rev. 1, Guidelines for Media Sanitization 1443
• SP 800-92, Guide to Computer Security Log Management 1444
• SP 800-100, Information Security Handbook: A Guide for Managers 1445
• SP 800-113, Guide to SSL VPNs 1446
• SP 800-114 Rev. 1, User's Guide to Telework and Bring Your Own Device (BYOD) 1447

Security 1448
• Draft SP 800-121 Rev. 2, Guide to Bluetooth Security 1449
• SP 800-128, Guide for Security-Focused Configuration Management of Information 1450

Systems 1451
• SP 800-137, Information Security Continuous Monitoring (ISCM) for Federal 1452

Information Systems and Organizations 1453
• SP 800-147, BIOS Protection Guidelines 1454
• Draft SP 800-155, BIOS Integrity Measurement Guidelines 1455

 1456

 1457

https://dx.doi.org/10.6028/NIST.SP.800-52r1
https://dx.doi.org/10.6028/NIST.SP.800-52r1
https://dx.doi.org/10.6028/NIST.SP.800-53r4
https://dx.doi.org/10.6028/NIST.SP.800-53r4
https://dx.doi.org/10.6028/NIST.SP.800-53Ar4
https://dx.doi.org/10.6028/NIST.SP.800-53Ar4
https://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://dx.doi.org/10.6028/NIST.SP.800-60v1r1
https://dx.doi.org/10.6028/NIST.SP.800-61r2
https://csrc.nist.gov/publications/drafts/800-63-3/sp800-63-3-draft.pdf
https://dx.doi.org/10.6028/NIST.SP.800-70r3
https://dx.doi.org/10.6028/NIST.SP.800-70r3
https://dx.doi.org/10.6028/NIST.SP.800-73-4
https://dx.doi.org/10.6028/NIST.SP.800-76-2
https://dx.doi.org/10.6028/NIST.SP.800-77
https://dx.doi.org/10.6028/NIST.SP.800-78-4
https://dx.doi.org/10.6028/NIST.SP.800-78-4
https://dx.doi.org/10.6028/NIST.SP.800-81-2
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-83r1
https://dx.doi.org/10.6028/NIST.SP.800-88r1
https://dx.doi.org/10.6028/NIST.SP.800-92
https://dx.doi.org/10.6028/NIST.SP.800-100
https://dx.doi.org/10.6028/NIST.SP.800-113
https://dx.doi.org/10.6028/NIST.SP.800-114r1
https://dx.doi.org/10.6028/NIST.SP.800-114r1
https://csrc.nist.gov/publications/drafts/800-121/sp800_121_r2_draft.pdf
https://dx.doi.org/10.6028/NIST.SP.800-128
https://dx.doi.org/10.6028/NIST.SP.800-128
https://dx.doi.org/10.6028/NIST.SP.800-137
https://dx.doi.org/10.6028/NIST.SP.800-137
https://dx.doi.org/10.6028/NIST.SP.800-147
https://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

42

Appendix C—Acronyms and Abbreviations 1458

Selected acronyms and abbreviations used in this paper are defined below. 1459

API Application Programming Interface

AUFS Advanced Multi-Layered Unification Filesystem

CVE Common Vulnerabilities and Exposures

CVSS Common Vulnerability Scoring System

DevOps Development and Operations

FIPS Federal Information Processing Standards

FISMA Federal Information Security Modernization Act

FOIA Freedom of Information Act

GB Gigabyte

I/O Input/Output

IP Internet Protocol

IT Information Technology

ITL Information Technology Laboratory

LXC Linux Container

NIST National Institute of Standards and Technology

NTFS NT File System

OMB Office of Management and Budget

OS Operating System

RTM Root of Trust for Measurement

SP Special Publication

SSH Secure Shell

TPM Trusted Platform Module

VM Virtual Machine

 1460

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

43

Appendix D—Glossary 1461

Container A method for packaging and securely running an application on a shared
virtual operating system. Also known as an application container or a
server application container.

Container runtime The layer above the host operating system that provides management
tools and APIs to allow users to specify how to run containers on a given
host.

Filesystem
virtualization

A form of virtualization that allows multiple containers to share the same
physical storage, while providing each container its own unique view of
that storage and prohibiting that container from viewing or tampering with
the storage of other containers.

Image A package that contains all the files required to run a container.

Isolation The ability to keep multiple instances of software separated so that each
instance only sees and can affect itself.

Microservice A set of containers that work together to compose an application.

Namespace
isolation

A form of isolation that limits the resources a container may interact with.

Operating system
virtualization

A virtual implementation of the operating system interface that can be
used to run applications written for the same operating system. [from [1]]

Orchestrator A tool for centrally managing groups of container hosts, including
monitoring resource consumption, job execution, and machine health.

Registry A service that allows developers to easily storage images as they are
created, tag and catalog images to aid in discovery and reuse, and find and
reuse images that others have created.

Resource isolation A form of isolation that limits how much of a host’s resources a given
container can consume.

Virtual machine A simulated environment created by virtualization. [from [1]]

Virtualization The simulation of the software and/or hardware upon which other
software runs. [from [1]]

 1462

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

44

Appendix E—References 1463

[1] NIST Special Publication (SP) 800-125, Guide to Security for Full Virtualization
Technologies, National Institute of Standards and Technology, Gaithersburg,
Maryland, January 2011, 35pp. https://doi.org/10.6028/NIST.SP.800-125.

[2] CoreOS, https://coreos.com

[3] Project Atomic, http://www.projectatomic.io

[4] Google Container-Optimized OS, https://cloud.google.com/container-optimized-
os/docs/

[5] Docker, https://www.docker.com/

[6] Linux Containers, https://linuxcontainers.org

[7] rkt, https://coreos.com/rkt/

[8] Open Container Initiative Daemon (OCID), https://github.com/kubernetes-
incubator/cri-o

[9] Amazon EC2 Container Registry (ECR), https://aws.amazon.com/ecr/

[10] Docker Hub, https://hub.docker.com/

[11] Kubernetes, https://kubernetes.io/

[12] Apache Mesos, http://mesos.apache.org/

[13] Docker Swarm, https://github.com/docker/swarm

[14] Jenkins, https://jenkins.io

[15] TeamCity, https://www.jetbrains.com/teamcity/

[16] Docker Trusted Registry, https://hub.docker.com/r/docker/dtr/

[17] Quay Container Registry, https://quay.io

[18] DC/OS, https://dcos.io

[19] NIST Special Publication (SP) 800-154, Guide to Data-Centric System Threat
Modeling (Draft), National Institute of Standards and Technology, Gaithersburg,
Maryland, March 2016, 25pp. http://csrc.nist.gov/publications/drafts/800-
154/sp800_154_draft.pdf.

https://doi.org/10.6028/NIST.SP.800-125
https://coreos.com/
http://www.projectatomic.io/
https://cloud.google.com/container-optimized-os/docs/
https://cloud.google.com/container-optimized-os/docs/
https://www.docker.com/
https://linuxcontainers.org/
https://coreos.com/rkt/
https://github.com/kubernetes-incubator/cri-o
https://github.com/kubernetes-incubator/cri-o
https://aws.amazon.com/ecr/
https://hub.docker.com/
https://kubernetes.io/
http://mesos.apache.org/
https://github.com/docker/swarm
https://jenkins.io/
https://www.jetbrains.com/teamcity/
https://hub.docker.com/r/docker/dtr/
https://quay.io/
https://dcos.io/
http://csrc.nist.gov/publications/drafts/800-154/sp800_154_draft.pdf
http://csrc.nist.gov/publications/drafts/800-154/sp800_154_draft.pdf

NIST SP 800-190 (DRAFT) APPLICATION CONTAINER SECURITY GUIDE

45

[20] NIST Special Publication (SP) 800-164, Guidelines on Hardware-Rooted Security in
Mobile Devices (Draft), National Institute of Standards and Technology,
Gaithersburg, Maryland, October 2012, 33pp.
http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf.

[21] NIST Special Publication (SP) 800-147, BIOS Protection Guidelines, National
Institute of Standards and Technology, Gaithersburg, Maryland, April 2011, 26pp.
https://doi.org/10.6028/NIST.SP.800-147.

[22] NIST Special Publication (SP) 800-155, BIOS Integrity Measurement Guidelines
(Draft), National Institute of Standards and Technology, Gaithersburg, Maryland,
December 2011, 47pp. http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-
155_Dec2011.pdf.

[23] Security Enhanced Linux (SELinux), https://selinuxproject.org/page/Main_Page

[24] AppArmor, http://wiki.apparmor.net/index.php/Main_Page

[25] NIST Special Publication (SP) 800-53 Revision 4, Security and Privacy Controls for
Federal Information Systems and Organizations, National Institute of Standards and
Technology, Gaithersburg, Maryland, April 2013 (including updates as of January
15, 2014), 460pp. https://doi.org/10.6028/NIST.SP.800-53r4.

[26] Framework for Improving Critical Infrastructure Cybersecurity Version 1.0,
National Institute of Standards and Technology, Gaithersburg, Maryland, February
12, 2014. https://www.nist.gov/document-3766.

 1464

http://csrc.nist.gov/publications/drafts/800-164/sp800_164_draft.pdf
https://doi.org/10.6028/NIST.SP.800-147
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
http://csrc.nist.gov/publications/drafts/800-155/draft-SP800-155_Dec2011.pdf
https://selinuxproject.org/page/Main_Page
http://wiki.apparmor.net/index.php/Main_Page
https://doi.org/10.6028/NIST.SP.800-53r4
https://www.nist.gov/document-3766

	Draft NIST SP 800-190, Application Container Security Guide
	Executive Summary
	1 Introduction
	1.1 Purpose and Scope
	1.2 Document Structure

	2 Introduction to Application Containers
	2.1 Container Architecture
	2.2 Container Technical Capabilities
	2.3 Container Attributes
	2.4 Container Uses
	2.5 The Container Lifecycle
	2.5.1 Build phase
	2.5.2 Distribution phase
	2.5.3 Run phase

	3 Major Risks in the Container Technology Stack
	3.1 Operational Differences Between Containers and VMs
	3.2 Host OS Risks
	3.2.1 Improper user access rights
	3.2.2 Host component vulnerabilities

	3.3 Container Runtime Risks
	3.3.1 Vulnerabilities within the runtime software
	3.3.2 Unbounded network access from containers
	3.3.3 Insecure container runtime configurations
	3.3.4 Shared kernel

	3.4 Image Risks
	3.4.1 Image vulnerabilities
	3.4.2 Image configuration
	3.4.3 Embedded malware
	3.4.4 Embedded secrets
	3.4.5 Image trust

	3.5 Registry Risks
	3.5.1 Insecure connections to registries
	3.5.2 Stale images in registries

	3.6 Orchestrator Risks
	3.6.1 Unbounded administrative access
	3.6.2 Weak or unmanaged credentials
	3.6.3 Unmanaged inter-container network traffic
	3.6.4 Mixing of workload sensitivity levels

	4 Countermeasures for Mitigating the Major Risks
	4.1 Hardware Countermeasures
	4.2 Host OS Countermeasures
	4.2.1 Vulnerabilities in core system components
	4.2.2 Improper user access rights

	4.3 Container Runtime Countermeasures
	4.3.1 Vulnerabilities within the runtime software
	4.3.2 Unbounded network access from containers
	4.3.3 Insecure container runtime configurations
	4.3.4 Shared kernel
	4.3.5 Compromised containers

	4.4 Image Countermeasures
	4.4.1 Image vulnerabilities
	4.4.2 Image configuration
	4.4.3 Malware
	4.4.4 Embedded secrets
	4.4.5 Image trust

	4.5 Registry Countermeasures
	4.5.1 Insecure connections to registries
	4.5.2 Stale images in registries

	4.6 Orchestrator Countermeasures
	4.6.1 Unbounded administrative access
	4.6.2 Weak or unmanaged credentials
	4.6.3 Mixing of workload sensitivity levels

	5 Container Threat Scenario Examples
	5.1 Exploit of a Vulnerability within an Image
	5.2 Exploit of the Container Runtime
	5.3 Running a Poisoned Image

	6 Secure Container Technology Stack Planning and Implementation
	6.1 Initiation Phase
	6.2 Planning and Design Phase
	6.3 Implementation Phase
	6.4 Operations and Maintenance Phase
	6.5 Disposition Phase

	7 Conclusion
	Appendix A— NIST Resources for Security Outside the Container Stack
	Appendix B— NIST Cybersecurity Framework and NIST SP 800-53 Security Controls Related to Container Stack Security
	Appendix C— Acronyms and Abbreviations
	Appendix D— Glossary
	Appendix E— References

